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1. SUMMARY

The Air Force Research Laboratory (AFRL) is developing a secure processor that integrates a multicore
logic layer with vertically stacked Dynamic Random Access Memory (DRAM). The chief advantage of
such 3D Memory Integrated architectures is the large amounts of memory that can be accessed by the on-
chip logic via high bandwidth vertical interconnects. It is therefore becoming feasible to develop
optimizations for Processing Near Memory architectures that enable parallel algorithms to exploit this
massive memory bandwidth, potentially revolutionizing the implementation of data-intensive algorithms,
including high dimension signal processing kernels. The AFRL architecture comprises the Target 3D
Memory Integrated Multicore Platform for this project. While the energy cost of block memory access can
be well-defined in such a platform, there is currently no method of optimizing the memory accesses of a
complex algorithm and its impact on energy consumption in platforms with 3D stacked memory. In
particular, the high bandwidth connection between logic and memory in 3D architectures has created an
opportunity to redesign the conventional processor-memory cache hierarchy. The specific design of the
cache hierarchy and its interconnection to the large on-chip buffers on the 3D memory controllers is
expected to have a significant effect on both kernel performance and overall energy-efficiency. Mapping
applications to this target platform is therefore complex due to these large number of architectural features
and their complex performance-energy-efficiency trade-offs. In this project we developed a performance
model of the Target 3D Memory Integrated Multicore Platform that can be used for evaluating the energy-
efficiency and performance-energy tradeoffs of specific signal processing algorithms as mapped on to this
target platform. We then demonstrated the efficacy of this framework by mapping representative signal
processing kernels to the Target 3D Memory Integrated Multicore Platform and generating design curves
describing the trade-off between energy efficiency and algorithm performance. Our results enable the
principled and practical exploration of parallel algorithm performance and energy-efficiency and
understanding of the impact of architectural design choices on performance-energy trade-offs which is
central to the adoption of 3D memory centered platforms in Command, Control, Communications,
Computers, Intelligence, Surveillance and Reconnaissance (C4ISR) applications.
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2. INTRODUCTION

Recent research has developed memory-centered architectures for organizing the 3D memory and logic
layers. We denote by 3D Memory Integrated Architecture (3DMIA) a specific arrangement of logic and
memory layers within a 3D Integrated Circuit (3DIC) and their interconnections. The chief advantage of
such architectures is the large amounts of memory that can be accessed by the on-chip logic via high
bandwidth vertical interconnects. It is therefore becoming feasible to develop optimizations for Processing
Near Memory architectures that enable parallel algorithms to exploit this massive memory bandwidth,
potentially revolutionizing the implementation of data-intensive algorithms, including high dimension
signal processing kernels. The Air Force Research Laboratory (AFRL) is developing a secure processor
that integrates a multicore logic layer with vertically stacked DRAM. This architecture represents one such
3DMIA, henceforth denoted as the Target 3D Memory Integrated Multicore Platform (Target 3D MI-MC
platform). However, as compared to conventional 2D memory, access to 3D memory is complicated by its
multilayered layout and energy usage patterns. While the average energy cost of memory access is lower
in 3DICs owing to the shorter interconnect distribution [1], the overall energy cost becomes significant
when data-intensive algorithms are executed. The challenge is therefore to develop algorithmic
optimizations that enable data-intensive parallel algorithms to exploit the massive memory interconnect
while meeting performance goals of throughput and latency while keeping energy consumption in check.
While the energy cost of block memory access can be well defined, there is currently no method of
optimizing the memory accesses of a complex algorithm and its impact on energy consumption in platforms
with 3D stacked memory. Mapping applications to such platforms is complex due to the large number of
architectural features and their complex performance-energy-efficiency trade-offs. In addition, the high
bandwidth connection between logic and memory in 3D architectures has created an opportunity to redesign
the conventional processor-memory cache hierarchy. The specific design of the cache hierarchy and its
interconnection to the large on-chip buffers on the 3D memory controllers is expected to have a significant
effect on both kernel performance and overall energy-efficiency.

3D Integrated Circuits (3DIC) technology refers to methods being developed to stack multiple layers of
logic or memory devices vertically and to connect such layers with high-bandwidth vertical interconnects.
Current interconnects are based on Through Silicon Vias (TSVs) that pass through the silicon substrates of
the active layers [2]. 3DIC technology is expected to reduce interconnect distances by 200x compared to
PoP/package-on-package, leading to shorter wire-length distribution, with the greatest reduction in the
longest paths [3-5].

Architectures: 3DIC architectures refer to the different methods of organizing processor and memory
components within a 3DIC. These include memory-on-processor architectures [6-9] where a memory stack
is integrated over a processor-like logic layer in a two-tier 3DIC. The memory stack can be embedded
DRAM prototype [9] or Static Random Access Memory (SRAM) on a multicore processing layer [7, 8]. A
single processor core can also be partitioned across tiers [1, 6]. 3D Stacked Logic-in-Memory combines the
features of traditional LiM/ Logic-in-Memory architecture and 3D Stacked DRAM. Here, layers of Logic-
in- Memory are interleaved between the 3D structure of DRAM layers. Thus, in addition to the benefits of
3D stacked memory, the benefits of having computation blocks close to memory can also be gained. 3DIC
technology is being applied to develop the next generation of field-programmable gate arrays (FPGA) [10-
12] as the high bandwidth interconnections particularly benefit FPGAs. 3DIC technology is most advanced
in the design of memory chips. 3D Stacked DRAMSs [13] use a bit architecture-oriented concept. The
combination of high bandwidth access to large banks of memory from logic layers makes 3DIC
architectures attractive for new approaches of computing, unconstrained by the memory wall.
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Energy-efficient FFT implementation: We briefly review the problem of efficiently (with respect
to energy) computing the Fast Fourier Transform (FFT) of a vector of size n. The energy cost of
implementing this specific architecture-algorithm pair depends on cost of the data transfers in the
butterfly network. Other than the problem size n, two major parameters determine the energy
consumption: Degree of horizontal parallelism (how many radix-4 stages are used in parallel), Hp,
and Degree of vertical parallelism (number of parallel pipelines), V, (Figure 1). Algorithm
performance, including energy consumption, depends significantly on the parallelism in the FFT
design. Figure 1 shows the energy consumption plot for an n = 256 BRAM-based FFT design with
varying Vyand H, parameters on Virtex Il FPGA (energy costs were estimated using Xilinx XPower

[14]).
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3. METHODS, ASSUMPTIONS, AND PROCEDURES

2D FFT can be implemented in two phases of Row FFT and Column FFT using the row-column algorithm
by performing 1D FFTs on rows and columns of inputs [8]. In the Row FFT phase of the algorithm, for a
problem size of N x N input matrix, 1D FFT is applied on each row of the input matrix in sequential order.
The outputs of the Row FFT phase act as inputs to the Column FFT phase. In the Column FFT phase, 1D
FFT is applied on each column of the N x N matrix and the outputs of Column FFT phase represent the
final output of 2D FFT on the original N x N input matrix.

2D FFT on 3D memory has been the focus of manyresearch works. In [9], memory optimized data layouts
are developed for FFT on hardware accelerators such as ASIC and FPGA. Block data layout is implemented
for DDR3 memory and later extended to 3D memory. A block is mapped to a row of abank and multiple
blocks are distributed among banks to increase the bandwidth of the memory. For a block of size t x t and
a problem size N x N, the on-chip memory requirement is of the order O(tN ). In [11], a Logic-in-Memory
(LiM) IC is developed to perform 2D FFT on 3D memory. Application specific logic cores are used to
implement 2D FFT and energy efficiency and bandwidth are targeted as the performance metrics. Although
inter-layer pipelining is utilized, block data layout from [9] is used. In [10], processing kernel on FPGA is
developed to implement dynamic data layouts to reduce the number of row activations. Multiple
rows/columns (p) of input data are prefetched from the memory and a permutation network is used while
writing back the outputs to memory to reduce the number of row activations. The on-chip memory
requirement is of the order O(pN), for 1 < p < t. None of these works focus on the on-chip memory
and require substantial amount of on-chip memory to achieve high bandwidth for large problem sizes.

We developed an Optimized data layout to implement 2D FFT on 3D memory which achieves a minimum
on-chip memory requirement without sacrificing the bandwidth and latency of 3D memory. We exploit
inter-layer pipelining and parallel vault access to hide the latency of accessing elements in the same layer
and overhead of accessing multiple rows. By achieving maximum bandwidth for both Row and Column
FFT phases, our data layout stores only the necessary elements in on-chip memory and minimizes the on-
chip memory requirement.

3.1 Target Architecture

Our target architecture is a 3D memory integrated FPGA consisting of 3D memory and an FFT
Processing Unit (PU) on FPGA. The components of the architecture are illustrated in Figure 2.

3D
' Banks Memory FPGA

Vault
& . - / Vault | |« Lt il
1 ‘Address ]
L ! 7= TSVs Address 1D
Layers < /7 /7 L Generation| | FE'T
77 7 Unit Kernel
/ / / g Vault ‘Address |
. ¥
Memory 2 “am
Controller

Figure 2: (a) Architecture of a 3D Memory (b) FFT PU on FPGA
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3D Memory

3D memory is organized as a set of v vaults consisting of | layers and b banks per layer in a vault.
Data in a vault is accessed using vertical interconnects (TSVSs). A representative architecture of 3D
memory consisting of 16 vaults with 4 layers and 4 banks per layer is illustrated in Figure 2(a). Vaults do
not share TSVs with one another and hence can be accessed in parallel. Within a vault, data in different
layers can be accessed at a faster rate than data in the same layer, a property known as inter-layer
pipelining [15], [16], [17]. This is because the latency of activation overhead of rows in different layers
can be overlapped due to fast TSVs. Within a layer, the structure of 3D memory is similar to the structure
of DDR3 with data stored in rows and columns in each bank. Accessing data stored in different rows of
the same bank incurs large latency due to row activation overhead whereas, bank interleaving can be
used to reduce the latency by accessing data in different banks. Each data element stored in a 3D memory
can be accessed by specifying the address in terms of vault, layer, bank, row and column. For each
read/write request to the 3D memory, a specific row in a bank belonging to a layer in a vault is accessed
and the bandwidth and latency of 3D memory depends on the access pattern of these requests. In our
previous work [18], [19], [20], we developed a parameterized model of the 3D memory to identify the
parameters which have a significant impact on the bandwidth and latency of 3D memory. Our model
characterizes the 3D memory in terms of timing parameters which take into account the architecture and
different access patterns. For the sake of completeness, we describe once again the parameters of the
3D memory model:

- tuaure: time between accesses to different vaults
tigyer: time between accesses to different layers in a vault
trank: time between accesses to different banks in a layer in the same vault
trow: time between accesses to different rows in a bank
teoi: time between accesses to different columns in a row

FFT Processing Unit (PU) on FPGA

The FFT processing unit consists of a 1D FFT kernel and an address generation unit. 1D FFT kernel
processes inputs of size N to produce FFT outputs. The address generation unit maps the inputs and outputs
of the 1D FFT kernel to the required addresses in the memory. Since the kernel can process streaming data,
we use different vaults to read inputs and write the outputs. In Figure 2, in the Row FFT phase, Vault 1 acts
as the input vault and Vault 2 acts as the output vault. In the Column FFT phase, their roles are reversed.

3.2 Performance Modeling of 3D Memory Integrated Architecture

For each component of the target architecture, we describe the parameters important for performance
modeling. We then map 2D FFT onto the model of the target architecture and derive the relevant equations
necessary to carry out performance analysis in terms of throughput. All the parameters are defined in terms
of number of processor cycles.

Data-Driven Architecture Parameterization

Figure 3 shows the 3D memory integrated architecture. 3D memory is used to store the input and output
matrices of 2D FFT and consists of 2 parameters: page hit and page miss. When a memory request results
in a page hit (tread nit / turite_nit), the latency is 12 cycles and a page miss (tread_miss/ twrite_miss) CaUSES a latency
of 24 cycles. We assume these parameters have the same value for both read and write requests. On-chip
memory can be accessed every clock cycle (ton chip). Based on empirical data, we observe that the exact
computation time of the processor (tcompute) Varies with the number of computations and problem size;
therefore, we assume that the total computation time of a single processor for 1D FFT of “n” elements is
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a*n (0 < a < 1) and we evaluate the algorithm architecture mapping for various values of «. Data exchange
across the interconnection network incurs a software overhead for each data transfer in addition to the
latency of data transfer across the network. We denote these parameters as tmpi and txwar respectively.

M1 M2
Ly X 4
| i ! TSVs
- - v
I On-chip
bus
P1 - == —> Pz T
1 f Crossbar
N, 7 : | Network
| x | \
. 7/ N .
Vou {
P3 l«— — —- — P4 P Processor
On-chip
C
Memory
: : 3D
v , M Memory
M3 M4

Figure 3: 3D memory integrated architecture

From the experimental values provided by AFRL, the 3D memory is a Double Data Rate (DDR) memory
running at 1 Giga Hertz (GHz) with 32 Giga Bytes (GB)/s peak bandwidth. This equates to 256 bits per
clock cycle (1 nanosecond (ns)). Therefore, we assume that 4 elements of 64 bits each can be read/write
in 12 cycles for page hit and 24 cycles for page miss. The parameters and their values are summarized in
Table 1.

Table 1: Throughput Parameters for 3D memory integrated architecture

Symbol Parameter Value (# cycles)
teompute computation time of 1D FFT for “n” inputs a*n
tread_hit read latency for page hit in the 3D memory 3
tread_miss read latency for page miss in the 3D memory 6
twrite_nit write latency for page hit in the 3D memory 3
twrite_miss write latency for page miss in the 3D memory 6
ton_chip access latency for read/write to on-chip memory 1

txbar latency of data transfer (“b” bits) across the crossbar (b/64)*3

tmpi software overhead for data transfer across the crossbar 4200*2
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LogP Model

We use the LogP model [21] to develop a performance model and develop algorithm architecture mapping
to arrive at the total execution time for implementing 2D FFT. Using the LogP model, we decompose the
task of 2D FFT into phases consisting of local computation at each processor and communication between
the processors. Parameters of LogP model are defined as:

L =an upper bound on the latency, or delay, incurred in communicating a message containing a word from
its source memory module to its target memory module

0 = overhead, defined as the length of time that a processor is engaged in the transmission or reception of
each message

g = gap, defined as the minimum time interval between consecutive message transmission or reception of
each message

P = number of processors/memory modules

Mapping the parameters of the target architecture in Table 1 to LogP model, it can be observed that L =
txpar; O = tmpi; g =1 and P = 4.

Performance Modeling Schematic

Based on the LogP model, we divide the computation of 2D FFT into 3 phases (Figure 4). Phase 1 consists
of computation on each processor to perform 1D FFT on the rows of input data. Phase 2 consists of
communication among processors to gather the required data for Column FFT. Phase 3 includes local
computation to perform 1D FFT on the columns of input data. Figure 2 illustrates the steps involved in each
of the phases. The initial algorithm-architecture mapping consists of the input n x n matrix being distributed
equally among the memory of all processors. Each 3D Memory of a processor has b rows of the input
matrix where, b = n/4. The different phases and the steps involved in these phases are explained below.
Later, we propose 2 performance models depending on the when the communication takes place (Phase 2)
between processors.

Local Computation and . Local Computation and
- - Personalized All-All . -
Communication on each Pi, Ci . . C o e Communication on each Pi, Ci
. Communication Pi-Pj, i#j .
and Mi and Mi
Read Write Read . Read Write
Write
from |1 3| from from | 4 6 to Mi from |7 9| from
Mi to Ci CitoMi | Mi oMl Mitoci Ci to Mi
2 5 8
— — —
Compute Row FFT using Pi and Ci Data Exchange Compute Column FFT using Pi and Ci

Figure 4: Three Phase 2D FFT Computation

3.3 Data Layouts

In this section, we describe the Baseline data layout and its limitations. Later, we present our proposed
Optimized data layout along with the mapping technique. The parameters of the architecture used in our
analysis and their definitions are described in Table 1. We assume each access to a vault results in a column
of data being available from the memory. For notation convenience, we assume there are 2v vaults in the
memory; v vaults are used to read inputs and v vaults are used to write the outputs. This assumption does
not affect our proposed data layout or the performance analysis.
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Table 2: Parameters of 3D Memory

Notation Definition
NxN Problem size
yAY # vaults in 3D memory

I # layers in a vault

b # banks per layer in a vault
r # rows in a bank
c # columns in a row of a bank

Baseline Data Layout

We use the block data layout proposed in [22] as the Baseline data layout. In this data layout, a block or a
tile of size t x t is mapped to a row of a bank in the memory and multiple such blocks are mapped to different
banks. The value of t ranges between [1, Vc]. In order to perform a 1D FFT of a row of N elements, an
entire row of blocks (equivalent to t rows of N x N) are transferred from the 3D memory to on-chip memory.
An FFT kernel is used to process the data stored in on-chip memory and the outputs are written back to
memory. This process is repeated for all the rows in the input matrix to complete the Row FFT phase. In
the subsequent Column FFT phase, entire column of blocks is transferred to the on- chip memory and
processed to produce the final Column FFT outputs. Although the Baseline data layout can enable high
throughput, we observe the following limitations of this data layout.

Limitation 1: Bandwidth of the 3D memory is proportional to the block size with t = ¢ achieving
maximum bandwidth. For t = V¢, blocks are accessed from different layers and the latency overhead of
accesses to the same bank is overlapped with accesses to banks in other layers and the bandwidth is limited
by tiayer. FOr t < \c, the majority of the consecutive blocks are mapped to banks in the same layer and toank
and teo will limit the bandwidth of the 3D memory. The effect of small block sizes on performance is
evident in [22], with t = (4, 8) achieving (33%, 50%) of the performance in comparison with that of t = 32.

Limitation 2: For an N x N problem size, O(NcN ) on-chip memory is required to achieve maximum
bandwidth.

At any point of time, an entire row/column of blocks of data (tN elements) need to be stored in on-chip
memory to process N elements of a row/column. Based on Limitation 1, maximum bandwidth is achieved
for t = \c. Therefore, the on-chip memory required is VcN elements of data. In [22], the authors use block
size t = 32 to achieve maximum bandwidth. For problem sizes N = [8192, 32768] complex single-precision
(2 x 32 bits per word) inputs, this translates to a large on-chip memory requirement in the range of 16-67
Mbits.

Therefore, the Baseline data layout requires large on-chip memory to achieve maximum bandwidth from
3D memory and on limited on-chip memory architectures, bandwidth of 3D memory reduces which
translates to higher execution time.
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Optimized Data Layout

Our data layout is defined by two mapping functions, corresponding to each phase of 2D FFT. Each
function is a mapping of an N x N matrix to locations in 3D memory. A location (address) is defined by the
quintuple v(a;), 1(ai), b(as), c(ai), r(a;) which maps matrix element a;j to a vault, layer, bank, column and
row in the 3D memory. The first mapping function (DL 1) describes the layout of FFT input matrix A in
3D memory before the start of the Row FFT phase. The second mapping function (DL 2) is used to write
the elements of matrix A’, the output of the Row phase, to 3D memory. The same layout is then used to
read columns of A" during the Column FFT phase. The outputs of this phase are the final outputs and can
follow either data layout above, depending on how the resultant matrix is to be used further.

In order to derive our mapping scheme for optimal on-chip storage and bandwidth maximizing 2D FFT
data layout, we make the following basic assumption about the timing parameters of 3D memory: tiayer <
{ toank, teot } < trow. We also assume the number of layers is sufficient to make 1. tiayer > {tcol, toank}. These
assumptions are based on our estimates of the timing and architecture parameters of 3D memory, as
described in [23]. The 3D memory in [23] has a peak bandwidth of 8 GB/s per vault and an element of 64
bits can be accessed for each memory request, which translates to an access time of 1 ns for each element.
Therefore, we assume tiayer = 1 ns which represents the least possible latency of memory accesses. Further,
since the structure of a layer in a 3D memory is similar to DDR3 [24], we estimate the values of other
timing parameters as toank = 2 NS, teo = 4 NS and trow = 40 ns based on timing parameters described in [24].
The key characteristics of our mapping scheme based on the above assumptions are as follows: Since vaults
can be accessed in parallel, it is trivial to distribute elements across vaults to maximize bandwidth. Our data
layout further maps accesses within a vault to different layers to ensure the minimum possible latency for
tiayer, fOr each access. Now, considering accesses within a vault, our layout maximizes bandwidth by hiding
the latency of consecutive accesses to the same row or different rows in a bank through a number of
intermediate accesses to other layers, utilizing p.tiayer > fcol aNd Q.tiayer > frow. FOr example, choosing p > 4
and g > 40 based on the parameters above, will hide the latency of tc and trow and incur a minimum latency
of tiayer. Hiding the latency of accesses to different rows and columns is possible due to the large number of
banks [23] and faster access across the 3™ dimension of 3D memory [15], [17].

For notational simplicity and without loss of generality in our description of the mapping schemes, we
assume that parameters N, v, I, b, r and ¢ are powers of 2 and that k = Wvlbc is an integer (power of 2).
These assumptions can be relaxed at the cost of increased notational complexity in the description of
our layout scheme. We also assume N< \vlbrc problem fits in memory).

Data Layout 1 (DL 1): Our first mapping scheme for the Row FFT phase is a straightforward round-robin
mapping of the rows of A over vaults, layers, banks, columns and rows (Figure 5). Each row of N input
elements from A is distributed in around robin fashion across v vaults (line 3). Similarly, in a round- robin
fashion, the N/v elements within a vault are distributed among I layers in that vault and the N/(vl) elements
within a layer distributed among its b banks (line 4). Finally, the N/(vIb) elements assigned to a bank are
distributed in row major order among its ¢ columns and r rows (line 5). This mapping function is repeated
for all the N rows of the input matrix.
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DL 1: Mapping Function for Matrix A (Row FFT Inputs)
a;j: (i,7)" element of A, 0<i,j <N —1
Address[a;;] — {v(ai;). l(ai;), blai;). claij), r(a;)}
v(a;;) = (i N +j) modwv

l(aij) = L“\%J)J mod [ ; blaij) = L%J mod b

clai;j) = L%J mod c; r(ai;) = L%J mod r

LT

=

wn

Figure 5: DL1 Mapping Function

Data Layout 2 (DL 2): Our second mapping scheme ensures that consecutive accesses to 3D memory
components (vaults, layers etc.) are sufficiently spaced to absorb respective component activation
overheads both during the row major write phase at the end of the Row FFT as well as during the column
major read phase at the start of Column FFT (Figure 6). Consider the same row index across all banks,
layers and vaults of 3D memory. Given ¢ columns per row, there are vibc locations corresponding to this
row index across the entire 3D memory. We want to repeatedly distribute elements from the rows and
columns of the N x N output matrix A of the Row FFT phase uniformly among these vibc locations for each
row index. Note that A is only available one row at a time and the writing to memory occurs as per our
mapping function after each row of A becomes available. We start by dividing A into contiguous k x k
blocks, with k = vibc. It should be note that although we divide the matrix into blocks, our blocks as well
as our mapping function are quite different from the Baseline data layout. DL 2 describes in detail each of
the mapping functions.

DL 2: Mapping Function for matrix A (Row FFT Outputs)
aij : (i,7)" element of A, 0<ij<N-1
Address|a;;] — {v(ai;). lai;), blai;), c(ai;). r(ai)}

{fa'._{;} // block related parameters
v(ai;) = (14 j) mod v
l(a;;) = Lﬂ = HJ) mod [
uU) = L 7 J - Lf J) mod b
(a) = % Lz] + [£]

Figure 6: DL2 Mapping Function
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4. RESULTS AND DISCUSSION

4.1 Performance Evaluation

3D memories have become popular recently, and since the exact internal architecture is proprietary,
existing cycle accurate simulators do not capture all the features of the 3D memory. For example, [25],
[26] do not provide the feature of inter-layer pipelining and are limited to specific types of 3D memory.
We do not claim cycle accurate performance comparison as we are looking for higher order performance
estimate of 2D FFT on 3D memory.

For the performance analysis, timing parameters of 3D memory are estimated as: tiayer = 1 NS, thank
=2 ns, tco = 4 ns and tow = 40 ns [23], [24]. We assume vaults can be accessed in parallel making v
elements available from v vaults in a time equal to the latency of accessing one element from 1
vault, i.e., tvaur = 0 Ns. We assume the inputs are complex single-precision floating point numbers (2 32
bits per word) and each access to a vault ensures 1 column/element of data, i.e., 64 bits are available to
the FPGA. The parameters of 3D memory are tabulated in Table IlIl. We assume a streaming FFT
Processing Unit on FPGA with 128 Gbits/s (16 GB/s) throughput. For a vault with a bandwidth of 8 GB/s
[23], 2 vaults saturate the throughput of the FFT processing unit. Therefore, 2 vaults are used to read inputs
and 2 vaults are used to store the outputs.

Table 3: 3D Memory Parameter Values

Parameter v I b r c Vault
Bandwidth
Values 4 4 4 4096 256 8 GB/s

In Figure 7(a), we analyze the amount of on-chip memory required to achieve maximum bandwidth for
Baseline and Optimized data layouts. The Baseline data layout uses a block size of t = 16 and on-chip
memory of 33 Mbits to achieve maximum bandwidth. We observe that the Optimized data layout achieves
maximum bandwidth with substantially lower on-chip memory (16x). In Figure 2(b), we assume the
architecture has a limited on-chip memory of 4 Mbits. For the Baseline data layout, the available on-chip
memory is sufficient to achieve maximum bandwidth for small problem sizes (N = 2048). For large problem
sizes (N = 8192, 32768), due to small amount of on-chip memory, Baseline data layout is restricted to small
block sizes and the majority of the consecutive accesses are mapped to the same layer and the bandwidth
is limited by thank OF teo. This translates to a higher execution time in comparison with the Optimized data
layout. On the other hand, the Optimized data layout does not suffer any degradation in performance since
the available on-chip memory is sufficient to store the required O(N) elements of input data and ensures
maximum bandwidth is achieved resulting in 2x to 4x reduction in execution time.
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Figure 7: Evaluation of Optimized Layouts

4.2 Performance Analysis
For the sake of completeness, we reiterate the 3 phases in the computation of 2D FFT on the target
architecture.
e Phase 1: Each processor computes 1D FFT on the rows of input data present in its private 3D
memory.
e Phase 2: Processors communicate among each other to gather the results of Row FFT which act as
input data for Column FFT.
e Phase 3: Local computation to perform 1D FFT on the columns of input data.

We also briefly describe the 2 models we developed in the previous quarter to accommodate different
interconnection networks.

Model 1: In this model, outputs of Row FFT are exchanged among processors after each row is processed.
This is due to the limitation of interconnection network in transferring large block sizes.

Model 2: If the interconnection network allows a sufficiently large block size, data exchange happens after
Row FFT computation of all the rows have been completed. This results in minimum overhead due to
communication between processors.

Equations are tabulated below in Table 4.

Table 4: Equations for Performance Models

Model 1 Model 2

tphasel = n*tread + tcompute + n*twrite tphasel = n*tread + tcompute + n*twrite

tphasez = [b*tread + tmpi + txbar + b*twrite] *3 tphasez = [bz(tread) + tmpi + txbar + bz(twrite)] *3

tphaseS = n*tread_miss + tcompute + n*twrite tphaseS = n*tread_miss + tcompute + n*twrite

Total Execution Time = [tphaser + tphasez + | Total Execution Time = tphases*(N/4) + tphase2 +
tphaseS] (n/4) tphaseS*(nM')

We present the performance of both the models for different problem sizes in Table 5. We also present
the effect of variation in a on performance.
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Table 5: Performance Comparison: Model 1 and Model 2

nxn o Performance (GOPS) Improvement
Model 1 Model 2 Model 2 vs Model 1
1024 x 1024 0.5 3.59 7.44 2.07%
1 3.52 7.13 2.03x%
4096 X 4096 0.5 7.06 8.96 1.27X
1 6.82 8.59 1.26X
8192 x 8192 0.5 8.56 9.71 1.14%
1 8.24 9.3 1.13%

For small problem sizes, Model 2 achieves a significant improvement in performance compared with Model
1. On the other hand, as the problem size increases, the read and write latency to memory dominates the
total execution time and the difference in performance between the 2 models is marginal.

We also evaluate the following optimizations to reduce the communication overhead and achieve higher
throughput for 2D FFT implementation on 3D memory integrated architectures.

Dynamic Data Layout: While performing data exchange between the processors, we write the data in
transpose format to the destination memory so that the future accesses for column FFT will result in a
sequential row accesses. For example, read the data sequentially from the memory of Processor 2 and while
writing this data to the memory of Processor 1, we write the data into different rows. Although we incur a
penalty while writing, the reduction in latency while performing column FFT makes up for this penalty.

Overlapping Communication and Computation: In an ideal scenario, the exchange of data between
processors should not be visible to the processors so that the processors are not idle. This results in peak
performance. To achieve the peak performance, we need to minimize the data exchange overhead by
overlapping computation time with data exchange time.

Data exchange between processors can be done at various levels of granularity. The two extremes are:
(a) Data exchange after every row FFT is finished
(b) Data exchange after the entire set of rows (n/4) FFT is finished

We have observed that if the data exchange is done after every row, the overhead is too high and very large
compared to local computation phase. On the other hand, if data exchange is done after all n/4 rows FFT
are finished; the local computation phase is much larger in magnitude. Therefore, there exists an optimum
granularity, i.e., after an “x” number of rows FFT have finished; data exchange for those rows can be
performed.

Equating the total computation time for “x” rows with the data exchange time for “x” rows gives us:
(n*tread + a*n + n*twrite)*x = [(n/4) (tread) *x + 4200*2 + (n/4)(3)*x + (n/4)(tv\/rite)*x]*3

By solving the above equations using the values from Table 4, we obtain: x = 8400*3/(n(a — 0.75))

Note: this is only applicable when « > 0.75.
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Therefore, we can start the data exchange phase after “x” rows FFT has been computed. Hence, the total
overhead of data exchange phase is equal to the initial latency to compute “x” rows FFT. Using the above
value of “x” in Model 2 we obtain the total execution time:

Total time = 3.75*n%+ a*(n%/2) + 8400*3*(6 + a)/(a. — 0.75)

With optimization #1 enabled, we observe that minimum value of « increases to 3. So, x = 8400*3/(n(a —

3))

An analytical performance comparison of baseline and optimized data layout is shown in Table 6.

Table 6: Performance Comparison of Baseline vs Optimized Data Layout
Baseline implementation: Optimized implementation:

tohaset = N*tread + ¥ + 1 *fwrite

tohasez = (N?/16) (tread) + 4200*2 + (n%/16)(3) +
(n?/16)(turite_miss)

tphases = N(tread) + a*n + n(turite)

Total Time = 5.25*n* + a*n?2) + 8400*3

tphase1 = N*tread + a*n + 1 *twrite

tohasez= (N%/16) (tread) + 4200*2 + (n%/16)(3) +
(n?/16) (twrite)

tphases = N*tread_miss + a*n + 1 *twrite

Total Time = 5.4375*n’ + a*(n*/2) + 8400*3

Empirical Performance Evaluation
Below, we present the performance of various models for different problem sizes. We also present the effect
of variation in a on performance of various models.

a=05
Model # Performance in GOPS
1024 x 1024 4096 x 4096 8192 x 8192
1 7.44 8.96 9.71
2 3.59 7.06 8.56
3 0.027 0.032 0.035
o=1
Model # Performance in GOPS
1024 x 1024 4096 x 4096 8192 x 8192
1 7.13 8.59 9.3
2 3.52 6.82 8.24
3 0.027 0.032 0.035
Performance Improvement using Optimizations
a=1
Model # Optimization # Performance in GOPS
1024 x 1024 4096 x 4096 8192 x 8192
1 None 7.13 8.59 9.3
1 1 7.36 8.87 9.61
2 2 8.63 11.88 12.97

5. CONCLUSIONS

While the energy cost of block memory access can be well-defined, there is currently no method of
optimizing the memory accesses of a complex algorithm and its impact on energy consumption in platforms
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with 3D stacked memory. Mapping applications to such platforms is complex due to the large number of
architectural features and their complex performance-energy-efficiency trade-offs. In addition, the high
bandwidth connection between logic and memory in 3D architectures has created an opportunity to redesign
the conventional processor-memory cache hierarchy. The specific design of the cache hierarchy and its
interconnection to the large on-chip buffers on the 3D memory controllers is expected to have a significant
effect on both kernel performance and overall energy-efficiency.

In this effort, we first developed a model-based optimization framework for implementing signal processing
algorithms in an energy-efficient manner on a 3D memory-integrated multicore architecture. We
demonstrated the efficacy of this framework by mapping representative signal processing kernels to the
Target 3D MI-MC platform. Specifically, our performance modeling approach was developed to enable the
following capabilities.

¢ Quantify the expected performance metrics of throughput, latency, and energy-efficiency of a given
algorithm after it is mapped on to the performance model.

o Evaluate the impact of alternate designs of the placement of the processor-memory cache on the
performance of an algorithm.

e Evaluate the impact of accessing 3D memory buffers and interfaces via an interposer layer.

e Quantify the expected trade-off between performance and energy-efficiency of the target platform
when a specific application kernel is executed on it.

We also developed an on-chip memory efficient data layout to implement 2D FFT on 3D memory. Our data
layout exploits inter-layer pipelining and parallel vault access to hide the latency overhead of strided
accesses. The data layout ensures maximum bandwidth is available from 3D memory with the on-chip
memory requirement of O(\YN) for a problem size of N x N. In comparison with the Baseline data layout,
our Optimized data layout reduces the on-chip memory by \c for ¢ columns in a row of a memory bank.
With limited on- chip memory, our data layout achieves 2 to 4 reduction in execution time compared with
the Baseline data layout.
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parse graph processing g highly irregular
Memory Access Patterns (MAP) which lack locality and result in
poor cache performance. In this paper, we propose a novel graph
ordering algorithm that addresses this problem. We observe that
existing reordering algorithms primarily try to improve cache
line utilization by enhancing spatial locality. They are oblivious
to cache data reuse which reflects the temporal locality that
MAP can possess. Qur premise is that peak efficiency can be
achieved by a graph order for which the resulting MAP exhibit
both spatial and temporal locality. Therefore, we first introduce
a new metric Profit, that quantifies cache data reuse leading to a
heuristic pH that enhances temporal locality in the MAP of graph
algorithms. Then we define a notion of dynamically matching
MAP with cache contents in a way that jointly maximizes both
cache data reuse and cache line utilization. To perform this joint
optimization, we develop a Block Reordering algorithm which
utilizes pH to rearrange blocks of consecutive nodes with high
spatial locality. We evaluate our algorithm using 8 real world
datasets and 4 representative graph algorithms. Experimental
results show that graphs obtained by Block Reordering can
achieve upto 2.3x speedup over the original graph order and
consistently outperform the existing state of the art reordering
technique by 20% to 25% reduction in cache misses.

Index Terms—Graph Analytics; Big Data; Cache Performance;
Data Layout; Graph Reordering

I. INTRODUCTION

Large scale graph analytics has become increasingly im-
portant in the era of big data. Many real world applications
like social networks, world wide web, road connections are
represented as graphs [1]. The rapid growth in size of these
graphs has led to development of various graph processing
frameworks in recent years. Although the main memory ca-
pacity has grown to be able to fit even large graphs on a
single server, it still remains challenging to efficiently utilize
the computing resources on conventional systems. This is
because of the high communication to computation ratio of
graph algorithms and poor locality in their access patterns [2],
[3]). As shown in [4], a large fraction of execution time is
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wasted on DRAM access latency. CPUs rely heavily on caches
for high bandwidth and low latency data access but due to the
irregular Memory Access Pattern (MAP) of graph algorithms,
loads and stores often incur cache misses causing processor to
stall. The focus of this paper is to improve cache performance
for efficient graph processing.

Caches communicate with main memory in quantum of
cache lines. In order to utilize cache lines efficiently, it is
desirable for the MAP to have high spatial locality. Further,
cached data is efficiently reused if the MAP has high temporal
locality. Therefore, increasing locality is crucial to improving
cache performance of graph algorithms.

In this paper, we use node reordering to increase cache hit
ratio for a large class of graph algorithms. The fundamental
concept behind reordering is to alter the arrangement of node
data in main memory in a way that increases locality in the
MAP [5], [6], (7], [8]. In [4] and [9), reindexing is used to
increase cache line utilization for graph processing algorithms.
In this paper, we propose a novel reordering algorithm that
improves cahce data reuse along with cache line utilization.
Our algorithm dynamically matches access patterns with cache
contents to enhance both spatial and temporal locality in the
MAP. The major contributions of our work are:

» A method to quantify temporal locality in MAP based
on amortized cache dependencies between graph nodes,
which leads to a heuristic that increases reuse of cached
data. We denote the quantifying metric Profit and the
derived cache aware heuristic pH.

A novel Block Reordering algorithm that performs com-
bined optimization over spatial and temporal locality
by reordering blocks of nodes in the same cache line.
To the best of our knowledge, this is the first work that
comprehensively addresses the issue of improving cache
performance using node reordering.

We evaluate our reordering using 4 representative graph algo-
rithms on large scale real world datasets and demonstrate 1.3x
to 2.3x speedup over original and optimized graph orders [9].
Experimental results show that the Block Reordering algorithm
achieves 20% to 25% reduction in cache misses compared to
existing state of the art [4].

Rest of the paper is organized as follows: Section II provides
motivation and related work on cache optimization for graph
processing; Section I1I explains the Profit metric that captures
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temporal locality and defines a Profir maximization problem
based on reordering; Section IV describes a greedy solution to
Profit maximization and the Block Reordering algorithm; Sec-
tion V discusses the complexity of our reordering algorithm
and the optimized data structures used to implement it; and
lastly, Section VI highlights the performance comparison of
our reordering with state of the art techniques and Section VII
concludes the paper.

II. BACKGROUND
A. Motivation

Graph Representation: We consider the adjacency matrix of
graph to be stored in Compressed Sparse Row (CSR) format
for the purpose of illustration. CSR representation is equivalent
to adjacency list with all adjacencies densely packed in a single
array. CSR is a standard format used in high performance
applications [10]. It stores the graph in two arrays: vertex
array (VA[]) and edge array (EA[]). The edges are sorted
by destination and the source node labels of all edges are
stored in EA[]. VA[] stores offsets into EA[] providing the
location of first incoming edge towards cach vertex. Additional
arrays attr{] and weight{] can be used to store attributes of
graph vertices and the edge weights, resepectively. We define
a dataset as large graph if number of vertices are much larger
than the cache capacity. Consequently, neither of the VA[],
EA[] and attrf] can fit in cache and must be read from main
memory.

Performance Bottleneck: In this paper, we focus on a broad
category of graph alorithms which are Stationary [11]. These
algorithms have a property that in each iteration, all vertices
are active and process their edges. Algorithm 1 depicts a
kemnel that is common to all stationary algorithms. SSSP

Algorithm 1 Kernel
1: for all nodes v € V do
2 for all edges (u,v) € E do
3 attr|v] = f(attr(u], atir[v], weight(edge))

using Bellman-Ford, Label Propagation, Louvain modularity,
algorithms that use SpMV kemnels like Pagerank etc. are
examples of some algorithms that fall under this category.
For such algorithms, CSR supports regular reads from VA[]
and EA[] which enables the existing memory architectures to
deliver high streaming performance. However, accesses artrfu]
are indexed by the source node labels in EA[]. Fig. 1 shows
that this access pattern can be highly irregular and spread
randomly across the array. As a result, requests to source
node attributes often incur main memory access latency, which
becomes the bottleneck in graph processing [12]. For the rest
of the paper, we'll consider accesses only to attr(] while
examining memory performance of graph algorithms.

B. Related Work

Considering the challenges mentioned in Section II-A, cache
performance and access pattern locality for graph analytics
has gamered lot of interest in the scientific community. This

VA i [l

atir

Fig. 1: While reading adjacencies of a vertex accesses consec-
utive locations in EA[], accesses to atirf] are data dependent
and highly irregular.

problem has been approached from different perspectives.
Researchers have tried to enhance data locality by targetting
algorithmic modifications: in [13], tiling and efficient data lay-
outs are used to improve performance of Floyd-Warshall. [14],
[151, [16] split PageRank and SpMV computation into phases
to produce cache friendly access patterns. However these are
algorithm specific optimizations that are employed at runtime.

In this paper, we specifically target the problem of reorder-
ing the graph vertices to improve cache performance for a large
class of algorithms. Reordering has been used in the past to
increase cache hit rate - RCM [17] and Depth first search [18]
use graph traversal to create clusters of nodes in same tree
levels; METIS [19] partitions the graph into clusters such that
highly connected nodes lie in same cluster. However, a recent
study [4] showed that tree based and clustering strategies do
not scale well with size and complexity of graphs because
of the absence of good edge-cuts in power law graphs and
small partition sizes required to represent cache lines. In [4],
a new algorithm GOrder is proposed that places the nodes that
are frequently accessed together, closely in the graph ordering
1o improve spatial locality of references. It overcomes the
drawbacks of partitioning by using a sliding window model
to compute relationship of a node v with other nodes in
the new graph order. Another reordering based approach that
uses frequency based clustering (FC) to improve utilization of
each cache line was recently proposed in [9]. FC performs an
intelligent degree sort that maintains the locality in original
graph order. In [9), it is shown that FC can reduce cache
contention by packing high degree nodes closer in the memory.

We observe that the recent works have focussed on im-
proving utilization of data in cache line by increasing spatial
locality of data references. Even by optimizing just spatial
locality, the GOrder algorithm achieves significant speedup
over skewing and cluster partitioning methods, making it the
most cutting-edge reordering amongst the works published
to date. However, cache hit rate can also be improved by
reusing the cached data which is directly related to temporal
locality in data access patterns. Note that the two types of
locality are orthogonal to each other and optimizing one
can leave the other unaddressed. In this paper, we propose
a novel algorithm that comprehensively targets both factors
behind cache performance. By performing joint optimization
over spatial and temporal locality, our reordering is able to
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outperform existing state of the art algorithms. In [20], the
benefits of a vertex scheduling that matches access patlemn
with cache contents are explored. Such a scheduling would
optimize both temporal and spatial locality but [20] does not
propose any algorithm to achieve it.

As temporal locality in graph algorithms has not been
formally addressed in the previous works, we first develop
a model and a quantification method for it, which is discussed
in the next section.

[II. PROBLEM FORMULATION

Given a directed graph G(V, E), for any node u € V, we
define its in-neighbor set Ny, (u) as {v € V | (v,u) € E}.
Similarly, a set of out-neighbors N,p(u) is defined as {v €
V | (u,v) € E}. Consider the CSR format explained in
Section II-A. Every node of the graph is associated with an
index that represents address of its attribute in the attr{] array.
Any reference to node i can lead to two possibilities :

« If anrfi] is present in cache, the request will be served

by cache.

« If aurfi] is not present in cache, it will be fetched from

DRAM and a copy will be stored in cache for future use.
Cache capacity in typical systems is limited and cannot accom-
modate the entire astr|] array for large graphs. Therefore, node
attributes get evicted and brought into the cache muitiple times
over the course of an algorithm. This sequence of eviction
and main memory fetch is determined by the memory access
pattern of the algorithm. An access pattern thal references
same set of nodes within a close time interval will exhibit
high temporal locality and higher cache hit ratio. To study
the memory access patterns, we examine the kernel given in
Algorithm 1 that is central to all the stationary algorithms.

As discussed previously, the primary bottlencck limiting the
performance of graph algorithms is the access to attr{] array.
We observe that the memory references made by the kernel
shown in Algorithm 1 are completely determined by the source
node labels in EA[]. Therefore, the task of increasing temporal
locality in graph processing reduces to finding a permutation
that results in local regions of EA[] having identical sets
of values. Moreover, for a given EA[], we have a priori
knowledge of the access pattern of such graph algorithms.
We use this information to derive a novel metric Profit that
quantifies reuse of cached data for a given graph.

A. PROFIT

When a graph algorithm processes vertex i, all the nodes
v € Nj,(i) are read and brought into the cache. If the
algorithm next processes node j, it will read v € Ny ().
Some of these reads will be cache hits if they reference the
same nodes that were accessed while processing i. We define
the Profit eamed by processing j after i as the number of
identical neighbors accessed and thus, the resulting cache hits
achieved. Mathematically, the Profit relationship is defined as:

Pm(':.}} = Nin{i) n Nin(j)
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(b) Profit maximized Tlope Labeling

Fig. 2: Graph with different node orders (left) and correspond-
ing data layout in memory (right). Il increases locality in
MEemory accesses.

While computing the net profit of a graph Pn.(G), we
consider the facl that nodes are processed in the order of their
indices. Therefore, Ppe(G) is a running accumulation of the
Profit of successive nodes given by:

vi-1 v]-1
Poet(G)= Y Profiliyi+1)= D Nin(i+1)N Nin(i)

i=1
)y
A node order that achieves the maximum Profit for a given
graph structure would exhibit high temporal locality. Let IT be
an arbitrary vertex labeling of V. Given a directed graph G,
we define Profit maximization P(C) as the problem of finding
the optimum mapping Ilgp:, that achieves highest possible
P..ct(G). From Eqg. 1, we get:
V-1
P(G) = argmax S NG + 1)) N Nin (M) )
i=1
Fig. 2 shows how Ilop can improve temporal locality in a
graph. Fig. 2a shows a graph G with vertices labeled randomly
and its layout in the main memory. Let the system processing
G have a hypothetical cache with capacity equal to 2 nodes.
To process G with node order given in fig. 2a, it will take 8
fetches from main memory because none of the nodes reuses
the data in cache brought by its predecessor. Compare it with
the same graph but with vertices labeled by Il as shown
in fig. 2b. On the same system, processing the graph in new
order will only take 4 fetches from the main memory while 4
of the loads issued by CPU will be cache hits.

Lemma 1. Obtaining optimum solution of P(G) is NP-Hard.

Proof. Let G(V, E) be an arbitrary graph on which we wish
to find a Hamiltonian Path. We transform G to an instance of
Profit P as follows. P is defined on a directed bipartite graph

i=1
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G'(Vy, Va, E'), where V; =V and |Vz| = | E|. For each edge
e = (u,v) € E, we draw a directed edge from vertex ¢ € V3
to vertices u € V) and v € V). Thus in graph G, vertices
in ¥, have no in-neighbors while vertices in V; share exactly
one neighbor if and only if there exists an edge between the
corresponding vertices in G.

We now claim the following: There exists a Hamiltonian
Path in G if and only if there exists a profit solution in P
of value exactly n — 1, where |V| = n. For the only if part,
suppose there exists such a profit solution. Let IT p be the
vertex relabeling of V; leading to this solution (vertices in V3
need not be relabeled as they do not contribute to the profit).
There are exactly n vertices in Il and each veriex has a a
profit of 1 with it’s adjacent vertex, since all profits are at most
1. Then there must exist an edge in E corresponding to two
consecutive vertices u;, %;41 in Ilgpy since they have a profit
exactly 1. Thus the labeling [T,y corresponds to a Hamiltonian
Path in G. For the if par, if there exists a Hamiltonian Path
in G, then clearly the order of vertex traversal in this path
corresponds to a labeling in P of net profit n — 1. n

Since maximizing Profit over a graph is NP-hard, we will
use a greedy heuristic to solve for P(G). Before we describe
our solution, we expand our model to incorporate the fact
that a cache can contain neighbors of not one, but multiple
nodes depending on its size. After a total of i nodes have
been processed, the Profit of j** node should not be computed
only with node i. Rather, it should be computed by matching
Nin(j) dynamically with the current cache contents, thus
generating cache awareness in our metric. Let Z(i) denote
the contents of cache after i nodes have been processed. Then,
Profit of j* node is given by:

Profif(Z(i), j) = Nin(j) N Z(3) 3

If neighbors of m nodes are present in the cache, Z(i) is
determined by the union of all those neighbors. Note that
m is not a constant and depends on the cache size and
neighbor sets of previously processed nodes. This introduces
additional challenges in the heuristic design, since we have
to maintain the Profit relationship of graph vertices with a
dynamic window of m nodes. Simuitaneously, we also need
to keep track of the cache contents Z(i) and the set of m
nodes whose neighbors reside in it. In further sections, we
discuss the details of our heuristic and the data structures that
we use to tackle these challenges.

IV. HEURISTICS

A. Profit enhancing Heuristic (pH)

pH is a greedy heuristic that solves for P(G) in an iterative
manner as shown in Algorithm 2. It makes use of the fact that
nodes are processed in the order of their indices and maintains
a dynamic model of cache contents based on previously pro-
cessed nodes. A new vertex labeling IT is therefore computed
in a manner that matches the contents in our cache model
with the neighbors of nodes 1o be processed. pH runs for [V|
iterations, each of which places one node consecutively in

the new order II. We denote the set of placed nodes as V;,
and unplaced nodes as Vyyp. In the i iteration, pH picks an
unplaced node with maximum Profit and assigns it an index
value of i in IT. It then recomputes the cache contents Z(i+1)
for next iteration and evicts old nodes if |Z(i + 1)| exceeds
the cache capacity denoted by L.

Algorithm 2 pH
1: while i < |V| do
2 Praz = 0;Vmaz = 0;
kX for all v € Vy,, do
4 if Profit(Z(i),v) > Pmas then
st Praz = Profit(Z(i), v);
6
T
8

Umaz = V5
HM = Umax;
: = Vup = Ymaz
9. load: Z(i+ 1) = Z(i) U Nin(Vmaz)
10:  while (|Z(i+1)| > L) do

1: evict : Z(i+1)=Z(i + 1) — Nip(i+1—m)
12: Update m

1% Update Profit(v', Z(i + 1)) V v' € Vyp

14 i=i+l

pH uses a Least Recently Used (LRU) strategy for data evic-
tion in the cache model similar to most real-world caches. It
timestamps the usage of cached data and maintains a dynamic
window of m recently processed nodes whose neighbors are
in cache.

Initially, the cache is empty and neighbors of nodes being
placed in IT will be simply augmented in the cache. Once it
gets full, m is dynamically updated by evicting LRU neighbors
of old nodes. The value of m is computed such that cache is
maximally filled and neighbors of any other node cannot be
accommodated in it. For a cache with capacity of L nodes,
the value of m at the end of i** iteration is given by:

m = argmax (| Nin(I)UNin(i—1)U..UNp(i+1-k)| < L)
k

Once all nodes have been placed, we recompute the vertex
array VA/] by accumulating the in degree of vertices in
the order determined by II. Edges in EA[] are relabeled
and rearranged to assign them to their respective destination
by placing them at the new offsets VA[]. The final CSR
thus obtained, represents the reordered graph with optimized
Profi(G) value.

Although pH enhances temporal locality, it has a drawback
resulting from the fact that it considers individual node at-
tributes as the quantum of data storage in cache. In reality,
data is stored and evicted from cache in terms of cache lines
that contain attributes of multiple graph vertices. To overcome
this drawback, we develop a novel Block Reordering algorithm
that is discussed in next subsection.

B. Block Reordering

When an array is laid out in memory, its elements arc
divided in different cache lines, each of which encompasses a
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fixed range of consecutive memory locations. We begin with a
simple but critical observation: if any two locations belonging
to different cache lines are accessed, then data has to be
communicated twice from main memory to cache, irrespective
of the relative closeness of these locations. This observation
leads us to the key idea behind Block Reordering: once the
graph nodes are efficiently packed in cache lines, the order in
which these cache lines are stored in main memory can be
altered without degrading their utilization. Block Reordering
exploits this fact to increase both spatial and temporal locality
by permuting the graph nodes in two steps:

« The first step improves the spatial locality and cache line
utilization for graph processing by packing nodes that are
frequently accessed together, closer in the memory. We
use GOrder (4] to perform this operation.

In the second step, sets of consecutively indexed nodes in
the reordered graph are grouped into blocks of equal size
and merged together to create a Hypernode. Each Hyper-
node is connected with the same edges as its constituent
nodes. Thereafter, we use pH to reorder Hypernodes
and then expand them to generale the same siructure as
the original graph. Since, the contents of a Hypernode
still have contiguous indices, spatial locality obtained
after first step is preserved. The final graph order thus
obtained, possesses high spatial and temporal locality and
effectively utilizes both the features of the cache.

Fig. 3 illustrates the effect of Block Reordering on the same
graph as fig. 2. Assume that one cache line can hold two nodes
and capacity of cache is equal to one cache line. The 4 source
nodes will therefore, be contained in 2 different cache lines.
In the pH reordered graph shown in Fig. 3a, even though
memory accesses are temporally localized, cache contention
is high because only half of the cache line contents are used.
Processing v, after vy will still incur 1 cache miss and so
will processing vg. In contrast, for the Block Reordered graph
given in 3b, processing v; completely utilizes one cache line
which is again reused by ve. Thus, processing vz and vg leads
to no cache misses.

Note that block size is a crucial input to Block Reordering
algorithm. The reason why block size should be larger than
the cache line size is that every CPU has its own mechanism
to determine the alignment of data in main memory. The way
we would partition nodes into cache lines for preprocessing,
could be different from how it happens when the graph is
loaded in DRAM. This could lead to one Hypernode being
segregated into multiple cache lines and hence, loss of spatial
locality. Hence, block size should be kept large enough for
it to encompass multiple cache lines. This ensures that the
contents of all cache lines that do not liec on the boundary
of a block, are preserved. Block Reordering effectively trades
off the granularity at which pH controls the permutation to
preserve cache line constituents. If block size is too large,
Ppe(G) after pH reordering will be low, leading to poor
temporal locality. Therefore, block size should be carefully
selected.

(b) Block Reordering

Fig. 3: Block Reordered and pH reordered graphs (left) and
comresponding data layout in memory (right) with 2 nodes
per cache line. Block Reordering increases both spatial and
temporal locality.

V. IMPLEMENTATION

In this section, we discuss the implementation details of
pH heuristic given in Algorithm 2. We first discuss naive im-
plementations and evaluate the time complexity of reordering
a graph. We observe that the cost of pH using existing data
structures is prohibitively large and propose a new Profit Bins
data structure to reduce the preprocessing time.

The most critical element in pH reordering is the Profir
value. Assume that an array Pf] stores the Profit of all nodes
during any ileration. Recall from equation 3 that Profit of a
node u is dependent on N;,(u) and cache contents Z(i) in
that iteration. The former set remains constant but the latter
changes as nodes are loaded and evicted from the cache.
Hence, updates to P[] should be associated with updates to
cache contents. In other words, P[] should be recomputed
when nodes are loaded in or evicted from the cache.

Since pH is a cache aware algorithm, we need data
structures to represent the cache contents Z(i). Algorithm 2
performs two main operations on the cache: load and evict,
which should be supported by these data structures. We fulfill
these requirements using 3 components that together achieve
an LRU cache model required for pH :

1) Cache Counter (CC) - an individual counter for every
node. A zero CC value means that the node is not present
in the cache. A non-zero counter value not only implies
the presence of that node in cache but also represents the
number of times that node was accessed while it was in
cache. An array CC{] is used to store counter values for
all the nodes in the graph.

2) LRUptr - a pointer to the oldest node whose neighbors
are still in the cache.

3) Cache capacity L - the maximum number of nodes that
can stay in cache at any time.

mn
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The following functions control the flow of data in our cache
model while performing corresponding updates to the Profit
values in P[]

+ FETCH(CC{], n) : Algorithm 3 represents how neighbors
of a node n are added to the cache contents. For every
in-neighbor u of node n, we check if u is already
present in cache. If not, u is loaded into the cache and
Plv] ¥V v € Ngp(u)} is incremented. If u is already in
cache, we only increment CCfu] to update the timestamp
used to determine LRU data in cache.

Algorithm 3 Fill Cache
1: function FETCH(CC/], n)

2 for all u € Nip(n) do

3 if (CC[u] == 0) then

4 for all v € Nyp(u) do
5 increase(P[v], 1);
[ CCfu] = CCfuj +1;

« REMOVE(CC(], n) : Algorithm 4 describes how neigh-
bors of a node n are removed from our cache model.
For every in-neighbor u of node n, we decrement the
counter CCfu]. If CCfu] is still non-zero, it implies that
u is not the least recently used node and hence, not
evicted, If CCfu] becomes 0, u is evicted from cache
and P[v]¥v € Nop(u) is decremented by 1.

Algorithm 4 Empty Cache

1: furction REMOVE(CCY), n)
for all u € Ni,(n) do
CCfu] = CCfu] — 1;
if (CC[u] == 0) then
for all v € Nop(u) do
decrease(P[v], 1);

S ooh W

Lemma 2. The complexity of pH Reordering is
o(2av- VI + g(VD)- 3 d3y(w))

ueV
where f(x) is the ity of removing the maximum
amongst T numbers and g(x) is the complexity of updating
a value in a set of x numbers.

Proof. Consider the pseudocode for pH given in Algorithm 2.
In every iteration, the algorithm pops the maximum Profit node
and there are |V| such iterations. Therefore, total time taken
by the maximum popping operation is O(f(|V]) - [V]).

The second term arises from the Profir updates performed in
load() and evict() operations. Consider the pseudocode given in
Algorithm 3 and 4. When a node u is loaded in or evicted from
the cache (i.e. CC[u]J=0), Profit of all of its out-neighbors is
incremented or decremented by 1. Therefore, time complexity
of single transfer to or from cache is O(g(|V'|)-dgp(u)). In the
worst case, number of loads and evictions of u are -dgp(u).
If every node in the graph encounters the worst case, number
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of Profit updates performed are O(d2,(u)) and the cost of
processing the entire graph is O(g(|V]) - ey d2p(w)). W

Naive Implementations: The most straightforward way to
implement Algorithm 2 is to use a single array P{] to store
the Profit value. In this case, f(z) = O(z) and g{z) = O(1).
Plugging these values in Lemma 2, we obtain the reordering
time to be O(|V[? + 3\ d2,(u)). For large graphs, this is
prohibitively expensive due to the |V[? term.

To reduce the complexity of popping the maximum value,
we can implement P{] as a max-heap giving f(z) =
O(log(z)) and g(z) = O(log(z)). The reordering time for this
implementation would be O(log({V|)-(I[V]|+ 2 ,cv cﬁp(u)))‘
Even for a graph with 1 million vertices, log(|V]) = 20 and
the reordering becomes very costly. Therefore, none of these
data structures can be used to implement pH reordering with
viable computation time for large graphs.

A. Profit Bins

To make pH reordering viable, we develop a new Profit Bins
data structure which comprises of an additional header array
called Bins[]. Just like VA[] in CSR graph format, Bins{i] is
offset to the location of first node with Profit value i in the
P[] array. The P[] array is always kept sorted so that nodes
with same Profi are stored consecutively in the same Bin and
maximum Profit node is always located at the end of the array.
This data structure is shown in fig. 4. We use a pointer maxPir
to denote the end of the array which shifts when the maximum
node is popped out. Nodes with index less than maxPtr in P[]
array represent the set of unplaced nodes Vip.

Note that in Algorithm 3 & 4, P[v] is incremented or
decremented by 1 only. We makes use of this fact to sup-
port constant time updates to P{] array. The pseudocode for
increase() and decrease() operations is given in Algorithm 5.
Note that to perform the swap operation in constant time, we
also maintain a mapping of vertex v to its position in P[]
array.

ot o] o1 [a]s]a]2]2]

Fig. 4: Optimized Data Structure for pH implementation.

We first check if v € Vi, so that nodes that are already
placed are not processed again. If P[v] is to be incremented
by 1, we shift it to the beginning of the next bin; if P{v] is to
be decremented by 1, we shift it to the end of preceding bin.
Offsets of the bins are adjusted accordingly before the function
returns. Fig. 5 illustrates the update operations on Profit Bins
data structure.

With the Profit Bins dala structure, both updates and
maximum node popping are executed in constant time i.e.
f(z) = O(1) and g(x) = O(1) drastically reducing the pre-
processing time. Moreover, the complexity of reordering given
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Algorithm 5 Profir Updates
1: function INCREASE(v, P[], Bins{])
2 if v < maxPir then
3 Pfu] = Plv] +1;
4 currBin = Pfuf;
5 newPos = Bins[currBin) —1;
6
7
§
9

swap(v, newPos),
: Bins|currBin] = Bins|currBin] —1;
: funetion DECREASE(w, P[], Bins{])
if v < maxPtr then

10: currBin = Pfv];

1 Plu] = Pfv]-1;

12 newPos = Bins[currBin];

13 swap(v, newPos);

14 Bins[currBin] = Bins[currBin] +1;

(b) Decrease P(5/

(a) Increase P[5/

Fig. 5: Update operations in Profit Bins data structure.

in Lemma 2 is a pessimistic upper bound. In practice, a node
u will not be loaded from cache by each of its out-neighbors.
If R{dgp(u)) denotes the ratio of number of times u is loaded
10 its out degree, complexity of reordering is given by:

o(|v| + 3 Ridop(u) - dﬁ,,(u))
uel”
Fig.6 shows the variation in R(d.,(u)) with the in-degree
of node u obtained by pre-processing Google+ dataset. We
observe that R(d,,(u)) < 0.05 for most high degree nodes.

V1. EVALUATION
A, Targer Applications
We implement and evaluate our reordering over 4 diverse
algorithms that are exlensively used in a variety of graph
processing applications. A description of the target algorithms
is given below:

o SpMYV Kernels, Pagerank: Sparse-matrix vector mul-
tiply is a fundamental kernel used by a large class of
algorithms [21]. In this paper, we use Pagerank [22]
as a representative algorithm to evaluate performance of

0.5
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Fig. 6: Ratio of cache transfers vs node degree. Probability of
eviction reduces as degree increases.

SpMV kernels. It iteratively compute z'*! = Ax' + B
where A is the adjacency matrix of graph and 2 is
pagerank vector.

Label Propagation: Label propagation is widely used to
study spread of influence in graphs and node classifica-
tion [23]. In our example, each node is initialized with
a distinet label and iteratively selects the minimum label
among its neighbors. This particular approach is used to
detect connected compenents in a graph [24].
Community Detection: Many algorithms that find com-
munity structures in graphs [25], [26], [27] can be clas-
sified as stationary. For the purpose of illustration, we
implement the algorithm given in [27] which iteratively
associates a node with the community to which majority
of its neighbors belong.

Single Source Shortest Path (SSSP): SSSP is a key
kernel in the Graph 500 benchmark list [1]. We use
Bellman-Ford algorithm to implement SSSP kernel.

B. Datasets

We use 8 real world datasets with size ranging from 1
million to 95 million nodes and 16.5 million to 1.94 billion
edges. The graph data is stored in CSR format [10]. Table |
summarizes size and sparsity characteristics of these datasets.

TABLE I: Real world Graph datascts

Dataset # Vertices | # Edges | Average degree
Pokec [28) 1.6 M 30.6 M 19.1
CitPatent [28] 3T M 165 M 4.5
Liveournal [29] 4.8 M 69 M 14.4
WikiLink [29) 121 M 378 M 31.2
Google+ [30] 289 M 463 M 16
Pld [31] 43 M 623 M 14.5
I'bKoneet [32] 59 M 186 M 3.2
Sl [31] 919M | 1937 M 204

Pokee, Livelournal, Google+ and Fbkonect are social net-
works; CitPatent is a patent citation network; WikiLink, Pld
and Sd1 are hyperlink graphs. Google+ is the largest social
network graph and Sdl is the largest web graph among
these datasets. CitPatent and FbKonect are extremely sparse
in nature with average degree < 5.
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TABLE II: Execution time of Pagerank (in seconds)

Datasel | Original | In degree FC | Out degree FC | GOrder | pH | Block R
Pokec 30.1 42 4.3 339 | 295 287
Citpatent ) 39 279 315 | 28.7 A1
LiveJournal | 859 1026 103.9 7301 | 694 654
Wikilink 315 376 210 70| 264 247
Google+ 366 950 976 612 | 563 523
Pid 1268 1164 1269 523 749 716
FbKonect 366 217 209 211 169 184
sdl 3988 3635 4604 1988 | 2267 1728

C. Experimental Setup

We conducled experiments on a linux server equipped with
AMD Opteron 6278 CPU@2.4GHz running Ubuntu 14.04
operating system. The per core L1 and L2 cache sizes for
this CPU are 76KB and 2MB respectively, and the shared L3
cache size is 6MB. All code is written in C++ and compiled
using G++ 4.7.1 with highest optimization -O3 flag. The L1
and L3 cache statistics are collected using the perf tool.

We set the cache capacity L = 100k and block size to 20 for

pH and Block Reordering heuristics. These parameter values
are empirically determined on our server by analyzing the pre-
processing time and cache performance of reordered graphs.
A thorough design space exploration of these parameters is of
independent interest but beyond the scope of this paper due
to space considerations.
Baselines: We compare our reordering against the state-of-
the-art GOrder algorithm [4], and the Frequency based Clus-
tering (FC) [9] that was recently proposed. In [4], it is shown
that the performance of GOrder is superior to reordering
algorithms previously developed like RCM [17], CHDFS [18]
and Minimum Linear and Logarithmic Arrangements [33] and
hence, we do not compare against these algorithms. Cache line
size parameter for GOrder is set to the optimum value of 5
as specified in [4]. Frequency based clustering is performed
using both in degree and out degree of graph nodes.

D. Results

Execution Time Speedup: We use execution time as the main
metric to analyze the performance of different reorderings.
The execution time is measured by running Pagerank, Label
Propagation and Community Detection for 100 iterations and
SSSP for 10 different starting nodes. We further repeat each of
these experiments 5 times and report the average running time.
Table II compares the runtime of Pagerank on all 8 datasets
with different node orderings. We see that Block Reordering
consistently outperforms pH and the baselines for all the
datasets except FbKonect. We also observe that performance
of FC is not consistent and its speedup for various datasets is
low with the execution time being even worse than that of the
original order.

Fig. 7 gives a comparison of the percentage speedup
obtained per iteration by pH and Block Reordering against
the baseline for all target applications. Percentage speedup

[Gorder

of a reordered graph is computed as 100 = (Iﬁﬂ - 1),
where Toriy and T, are the execution time per iteration
of an application on original and reordered graphs, respec-
tively. We see that apart from FbKonect, FC fails to obtain
significant improvement on other datasets. GOrder achieves
high performance specially on large graph datasets where it
accelerates the processing by 50% to 100%. However, the
speedup obtained by pH alone is comparable to GOrder in
most cases. Further, by performing joint optimization, Block
Reordering outperforms both pH and GOrder. We also observe
that the performance enhancement of Block Reordering and
pH is particularly high for very large graphs. This is because
for large graphs, very small fraction of nodes can fit in the
cache and therefore, original graph order incurs large number
of cache misses.

Cache Miss Ratio: Table III and IV show the L1 and L3
cache statistics during execution of Pagerank on Google+ and
Sdl dataset, respectively. The number of memory references
and L3 misses are represented in billions (B). Total memory
references are the same as the L1 references reported by perf
since every access first goes through the L1 cache. It is evident
that while GOrder reduces the L1 cache misses, pH efficiently
decreases L3 cache miss ratio. Block Reordering combines
both the ideas to effectively minimize the total number of L3
cache misses resulting in reduced communication with main
memory. It incurs approximately 20% to 25% less L3 cache
misses than GOrder and pH. Table V and VI give the overall
cache miss ratio (pELCHISE ) on Google+ and Sd1 dataset,
respectively, during execution of all the target algorithms listed
in Section VI-A. It is evident that for all the algorithms, Block
Reordering achieves minimum cache miss ratio amongst all
the graph orders.

TABLE I1I: Cache performance for Pagerank on Google+

Graph Order #refs | LlI-mr | L3mr | # L3 misses
Original 1265 B | 294% 68% 269 B
In degree FC 1319 B | 336% | T04% 328 B
Out Degree FC 1326 B | 339% | 729% 343 B
GOrder 1225 B 16% 54.6% 127B
H 12318 | 21% | 33.6% 121 B
Block Reordering | 1234 B | 174% | 41.6% 102 B

Pre-processing Time: Table VII shows the time taken
to compute all the reorderings compared above. In-degree
and Out-degree FC have the smallest pre-processing cost
because they are essentially performing a sort operation on
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Fig. 7: Percentage speedup of different orderings over original graph.

TABLE IV: Cache performance for Pagerank on Sd1

TABLE VI: Overall cache miss ratio for Sd1 dataset

Graph Order #refs | Ll-mr | L3-mr | # L3 misses

Graph Label

TABLE V: Overall cache miss ratio for Google+ dataset

g’r:‘::_' Pagerank | ':’:’e'. L',L'“"“',"“” sSSP
Original 21.3% 18.6% 4.9% 14%

In degree FC 24.9% 21.6% 4.9% 16.3%
Out degree FC 25.9% 229% 5.5% 17.1%
GOrder 10.3% B.6% 2.2% 6.5%

pi 9.8% 7.9% 2% 6.1%

Block Reordering B.2% 6.3% 1.7% 4.9%

graph nodes. However, as observed earlier, FC is unable
to reduce the cache misses consistently for all the graph
datasets. Moreover, node indexing is compuled offline only
once. Therefore, even though the other reordering techniques
have a high pre-processing cosl, their savings are huge as the
target applications are run multiple times on the reordered

Communit e
Original 506 B | 32% | 689% | 13248 Order Pagerank |, Detection. | 5P
In degree FC 534 B 25.3% 67.5%% 992 B Original 25% 231.2% 57% 17.5%
Out Degree FC 531 B 32.3% 56.3% 1027 B In degree FC 18.6% 16.7% 4.1% 12.5%
GOrder 4864 B 15% 45.1% 4231 B Out degree FC 19.4% 18.6% 4.6% 14.1%

il J5I8B | 9% | 9.2% | 2B GOrder 57% 59% 19% 1%
Block Reordering | 491 B | 169% | 36.1% | 3498 i 9.1% 9% 2% 58%
Block Reordering T.1% 5.7% 1.6% 44%

graph amortizing the reordering cost.

While the speedup obtained by pH is comparable to the state
of the art GOrder algorithm, its reordering time is less than
half that of the latter. Note that the time reported for Block
Reordering does not include the cost of computing GOrder.
From Table VII, we see that its overhead is only 10% 10 20%
above GOrder for all the graphs.

VII. CONCLUSION

Due to the irregularity in data access patterns of graph
analytic algorithms, caches in CPU systems fail to reduce the
main memory accesses effectively. In this work, we presented
a novel Block Reordering algorithm that enhances both spatial
and temporal locality in access patterns of graph algorithms
to comprehensively address the issue of cache performance.
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TABLE VII: Reordering time (in seconds)

In degree | Out degree Block
Dataset FC v GOrder | pH | o ing

Pokec 0.7 0.75 313 14 59
CitPatent 0.98 1 9.9 4.9 144
Liveloumal 85 1.84 bl 289 11
‘WikiLink .26 6.41 736 239 57
Google+ 4.8 17.1 1597 650 197
Pid 29.3 24.8 3027 1703 443
FbKonect 3.7 136 257 559 357

Sd1 63.2 52.9 11651 3791 2754

Experimental results show that our reordering can achieve
upto 2.3x performance compared to original graph order
while consistently outperforming the state of the art GOrder
algorithm by 20% to 25% reduction in cache misses. This
highlights the ity of cc d spatio-temporal locality

hancement to achi high cache performance for graph
processing. We believe that sophisticated algorithms can be
developed that perform such joint optimization in a single
reordering step. This can drastically reduce the pre-processing
cost and perhaps, result in even better performance.

This paper also delineates the development of a
parametrized cache-aware reordering algorithm pH. It takes
into account the capacity and the eviction policy of cache.
Although pH is designed for LRU caches, the underlying
methodology can be adapted for other memories such as
user controlled on-chip memory on GPU and FPGA. Being
parametrized, the performance of Block Reordering and pH is
sensitive to the choice of cache capacity and block size values.
In future work, we intend to determine the optimal range of
values of these parameters by rigorously exploring their effect
on performance.
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Abstract—3D memories are becoming viable solutions for the
memory wall problem and meeting the bandwidth requirements
of memory intensive applications. The high bandwidth provided
by 3D memories does not translate to a proportional increase
in performance for all applications. For an application such
as 2D FFT with strided access patterns, the data layout of
the memory has a significant impact on the total execution
time of the implementation. In this paper, we present a data
layout for 2D FFT on 3D memory integrated FPGA that is
both on-chip memory efficient as well as throughput-optimal.
Our data Iayout that ive to 3D memory
are sufficiently interleaved among layers and vaults to absorb
latency due to activation overheads for both sequential (Row
FFT) and strided (Column FFT) accesses, The current state-of-
the-art implementation on 3D memory requires O(+/c/N) on-chip
memory to reduce the strided accesses and achieve maximum
bandwidth for an N x N FFT problem size and ¢ columns in a
3D memory bank row. Our proposed data layout optimizes the
throughput of both the Row FFT and Column FFT phases of 2D
FFT with O(N) on-chip memory for the same problem size and
memory parameters without d ing the y bandwidth
thereby achieving a /cx reduction in on-chip memory. On
architectures with limited on-chip memory, our data layout
achieves 2x to 4x improvement in execution time compared
with the state-of-art 2D FFT implementation on 3D memory.

I. INTRODUCTION

3D memory is a potential solution to the memory wall
problem of low bandwidth with a promising bandwidth in the
range of 300-400 GB/s [1], [2]. Although 3D memories pro-
vide higher bandwidth than existing 2D memory technologies
such as DDR3 [3], the actual bandwidth available depends on
the access pattern of the application and thus may be much
lower than the peak bandwidth. In particular, the traditional
row activation overhead can become a bottleneck due to
random accesses to multiple rows. To maximize the available
bandwidth from the 3D memory, optimizations specific to the
access pattern of the application need to be developed.

Fast Fourier Transform (FFT) is an important kernel used
in signal processing applications [4], [S]. Specifically, 2D FFT
is widely used in image processing applications and requires
high throughput for large image sizes [6], [7]. 2D FFT is
implemented as a combination of Row and Column FFT
phases [8). The Row FFT phase consists of sequential accesses
to the memory which result in high bandwidth and low latency.
On the other hand, the Column FFT phase has strided accesses

‘This material is based in part upon work supported by the Air Force
Research Laboratory under Grant Number FA8750-15-1-0185.

which translate to accesses to different rows of a bank. These
non-sequential accesses to the memory result in low bandwidth
and high latency due to the activation overhead of accessing
multiple rows.

There have been works [9], [10] targeting optimizations to
the data layouts for 2D FFT implementation on 3D memory.
The previous works focus on achieving high bandwidth by
storing multiple rows/columns of input data in on-chip mem-
ory and reducing number of strided accesses to the memory.
Although high bandwidth is achieved by the proposed data
layout, large number of complete rows/columns need to be
stored in on-chip memory to achieve this high bandwidth. As
the problem size increases, the amount of on-chip memory has
to be increased proportionally to store the entire rows/columns
and maintain high bandwidth. With limited on-chip memory,
the data layouts of existing works is not able to extract
maximum bandwidth from the 3D memory which results in
higher execution time.

We observe that the structure of 3D memory can be ex-
ploited to hide the latency overhead of accessing multiple
rows resulting from strided accesses. By employing the inter-
layer pipelining and parallel vault access features of 3D
memory, we develop an optimized data layout that provides
maximum bandwidth for both sequential and strided accesses
and requires only the necessary elements to be stored in on-
chip memory. Our throughput-optimal data layout for 2D FFT
on 3D memory has the following key features: (1) Consecutive
elements are mapped to different layers to exploit faster access
across 3¢ dimension than mapping elements to the same
layer; (2) Vaults are accessed in parallel since the latency of
multiple vault access is the same as that to a single vault
and (3) Accesses to the same layer are separated by sufficient
number of intermediate accesses to other layers to hide the
access latency. The main contributions of this paper are:

« We present an optimized data layout for 2D FFT on
3D memory that achieves maximum bandwidth for both
sequential and strided access patterns of 2D FFT.

« Qur data layout achieves an on-chip memory requirement
of O(N) for a 2D FFT problem size of N x N without
sacrificing the bandwidth and latency of 3D memory.

« Our data layout achieves /cx reduction in on-chip
memory compared with state-of-the-art 2D FFT imple-
mentation given ¢ columns in a row of a memory bank.

« On architectures with limited on-chip memory, our data
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layout achieves 2x to 4x improvement in execution time
compared with state-of-the-art 2D FFT implementation
for large problem sizes.

The rest of the paper is organized as follows. Section II
covers the related work for 2D FFT on 3D memories. Scc-
tion III describes the target architecture and its components.
Section IV describes the Baseline data layout and introduces
the proposed Optimized data layout. Section V presents the
evaluation methodology and performance analysis. Section VI
concludes the paper.

II. BACKGROUND AND RELATED WORK

2D FFT can be implemented in two phases of Row FFT and
Column FFT using the row-column algorithm by performing
1D FFTs on rows and columns of inputs [8]. In the Row FFT
phase of the algorithm, for a problem size of N x N input
matrix, 1D FFT is applied on each row of the input matrix
in sequential order. The outputs of the Row FFT phase act as
inputs to the Column FFT phase. In the Column FFT phase,
ID FFT is applied on each column of the N x N matrix and
the outputs of Column FFT phase represent the final output
of 2D FFT on the original NV x N input matrix.

2D FFT on 3D memory has been the focus of many research
works. In [9], memory optimized data layouts is developed
for FFT on hardware accelerators such as ASIC and FPGA.
Block data layout is implemented for DDR3 memory and later
extended to 3D memory. A block is mapped to a row of a bank
and multiple blocks are distributed among banks to increase
the bandwidth of the memory. For a block of size ¢ x { and
a problem size N x N, the on-chip memory requirement is
of the order O(tN). In [11], a Logic-in-Memory (LiM) 1C
is developed to perform 2D FFT on 3D memory. Application
specific logic cores are used to implement 2D FFT and energy
efficiency and bandwidth are targeted as the performance
metrics. Although inter-layer pipelining is utilized, block data
layout from [9] is used. In [10], processing kernel on FPGA
is developed to implement dynamic data layouts to reduce the
number of row activations. Multiple rows/columns (p) of input
data are prefetched from the memory and permutation network
is used while writing back the outputs to memory to reduce the
number of row activations. The on-chip memory requirement
is of the order O(pN), for 1 < p < . None of these
works focus on the on-chip memory and require substantial
amount of on-chip memory to achieve high bandwidth for
large problem sizes.

In this paper, we propose an Optimized data layout to
implement 2D FFT on 3D memory which achieves a min-
imum on-chip memory requirement without sacrificing the
bandwidth and latency of 3D memory. We exploit inter-
layer pipelining and parallel vault access to hide the latency
of accessing elements in the same layer and overhead of
accessing multiple rows. By achieving maximum bandwidth
for both Row and Column FFT phases, our data layout stores
only the necessary elements in on-chip memory and minimizes
the on-chip memory requirement.

III. TARGET ARCHITECTURE
Our target architecture is a 3D memory integrated FPGA
consisting of 3D memory and an FFT Processing Unit (PU)
on FPGA. The components of the architecture are illustrated
in Figure 1.

ki
anks Memory
Vault
aul T 4 an.'lll.l
1)
TSVs
Layers T
Vaulli
Memory 2|
Controller

Fig. 1: (a) Architecture of a 3D Memory (b) FFT PU on FPGA
A. 3D Memory

3D memory is organized as a set of v vaults consisting of
I layers and b banks per layer in a vault. Data in a vault is
accessed using vertical interconnects (TSVs). A representative
archtiecture of 3D memory consisting of 16 vaults with 4
layers and 4 banks per layer is illustrated in Figure I(a).
Vaults do not share TSVs with one another and hence can
be accessed in parallel. Within a vault, data in different layers
can be accessed at a faster rate than data in the same layer,
a property known as infer-layer pipelining [12], [11], [13].
This is because the latency of activation overhead of rows in
different layers can be overlapped due to fast TSVs, Within a
layer, the structure of 3D memory is similar to the structure
of DDR3 with data stored in rows and columns in each bank.
Accessing data stored in different rows of the same bank incurs
large latency due to row activation overhead whereas, bank
interleaving can be used to reduce the latency by accessing
data in different banks. Each data element stored in a 3D
memory can be accessed by specifying the address in terms of
vault, layer, bank, row and column. For each read/write request
to the 3D memory, a specific row in a bank belonging to a
layer in a vault is accessed and the bandwidth and latency of
3D memory depends on the access pattern of these requests.

In our previous work [10], [14], [15], we developed a
parameterized model of the 3D memory to identify the pa-
rameters which have a significant impact on the bandwidth
and latency of 3D memory. Our model characterizes the 3D
memory in terms of timing parameters which take into account
the architecture and different access patterns. For the sake of
completeness, we describe once again the parameters of the
3D memory model:

s lyauti: time between accesses o different vaults

o Ligyert time between accesses to different layers in a vault

s lpane: ime between accesses to different banks in a layer

in the same vault

s Lrow: time between accesses to different rows in a bank

s beor: time between accesses to different columns in a row
It should be noted that all the above parameters except i, are
defined assuming the rows being accessed are already active.
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B. FFT Processing Unit (PU) on FPGA

The FFT processing unit consists of a 1D FFT kernel and
an address generation unit. 1D FFT kemnel processes inputs
of size N to produce FFT outputs. The address generation
unit maps the inputs and outputs of the 1D FFT kemel to
the required addresses in the memory. Since the kemel can
process streaming data, we use different vaults to read inputs
and write the outputs. In Figure 1, in the Row FFT phase,
Vault 1 acts as the input vault and Vault 2 acts as the output
vault. In the Column FFT phase, their roles are reversed.

IV. DATA LAYOUTS

In this section, we describe the Baseline data layout and
its limitations. Later, we present our proposed Optimized data
layout along with the mapping technique. The parameters of
the architecture used in our analysis and their definitions are
described in Table I. We assume each access to a vault results
in a column of data being available from the memory. For
notation convenience, we assume there are 2v vaults in the
memory; v vaults are used to read inputs and v vaults are
used to write the outputs. This assumption does not affect our
proposed data layout or the performance analysis.

[Notation Definition
x N problem size
2v ## vaults in 3D memory
3 # layers in a vault
b # banks per layer in a vault
r # rows in a bank
c # in a row of a bank

TABLE [: Parameters of 3D Memory

A. Baseline Data Layout

We use the block data layout proposed in [9] as the Baseline
data layout. In this data layout, a block or a tile of size { x { is
mapped to a row of a bank in the memory and multiple such
blocks are mapped to different banks. The value of ¢ ranges
between [1,+/c]. In order to perform a 1D FFT of a row of
N elements, an entire row of blocks (equivalent to ¢ rows
of N x N) are transferred from the 3D memory to on-chip
memory. An FFT kemnel is used to process the data stored in
on-chip memory and the outputs are written back to memory.
This process is repeated for all the rows in the input matrix
to complete the Row FFT phase. In the subsequent Column
FFT phase, entire column of blocks are transferred to the on-
chip memory and processed to produce the final Column FFT
outputs. Although the Baseline data layout can enable high
throughput, we observe the following limitations of this data
layout.

Limitation 1: Bandwidth of the 3D memory is proportional
to the block size with ¢2 = ¢ achieving maximum bandwidth.

For t2 = ¢, blocks are accessed from different layers and the
latency overhead of accesses to the same bank is overlapped
with accesses to banks in other layers and the bandwidth is
limited by fiayer. For 2 < ¢, majority of the consecutive
blocks are mapped to banks in the same layer and fpani and
teo; Will limit the bandwidth of the 3D memory. The effect of

small block sizes on performance is evident in [9], with { =
(4, 8) achieving (33%, 50%) of the performance in comparison
with that of £ = 32.

Limitation 2: For an N x N problem size, O(,/cN) on-
chip memory is required to achieve maximum bandwidth.

At any point of time, an entire row/column of blocks of
data (N elements) need to be stored in on-chip memory to
process N elements of a row/column. Based on Limitation 1,
maximum bandwidth is achieved for t? = c. Therefore, the
on-chip memory required is /cN elements of data. In [9],
the authors use block size ¢ = 32 to achieve maximum
bandwidth. For problem sizes N = [8192,32768] complex
single-precision (2 x 32 bits per word) inputs, this translates
to a large on-chip memory requirement in the range of 16 — 67
Mbits.

Therefore, the Baseline data layout requires large on-chip
memory to achieve maximum bandwidth from 3D memory
and on limited on-chip memory architectures, bandwidth of
3D memory reduces which translates to higher execution time.

B. Optimized Data Layout

Our data layout is defined by two mapping functions,
corresponding to each phase of 2D FFT. Each function
is a mapping of an N x N matrix to locations in 3D
memory. A location (address) is defined by the quintuple
{v(ai;), Haij), bai;), e(aij), r(ai;)} which maps matrix el-
ement a;; to a vault, layer, bank, column and row in the
3D memory. The first mapping function (DL 1) describes the
layout of FFT input matrix A in 3D memory before the start
of the Row FFT phase. The second mapping function (DL 2)
is used to write the elements of matrix A, the output of the
Row phase, to 3D memory. The same layout is then used to
read columns of A during the Column FFT phase. The outputs
of this phase are the final outputs and can follow either data
layout above, depending on how the resultant matrix is to be
used further.

In order to derive our mapping scheme for optimal on-
chip storage and bandwidth maximizing 2D FFT data layout,
we make the following basic assumption about the timing
parameters of 3D memory: tigyer < {toank:teot} < trow-
We also assume the number of layers is sufficient to make
1 tiayer = {tcol,tbank} (we also describe the performance
results in Section V-B when this assumption is relaxed). These
assumptions are based on our estimates of the timing and
architecture parameters of 3D memory, as described in [1].
The 3D memory in [1] has a peak bandwidth of 8 GB/s per
vault and an element of 64 bits can be accessed for each
memory request, which translates to an access time of 1 ns
for each element. Therefore, we assume fayer = 1 ns which
represents the least possible latency of memory accesses.
Further, since the structure of a layer in a 3D memory is
similar to DDR3 [3], we estimate the values of other timing
parameters as tponk = 2 18, teot = 4 15 and Ly = 40 ns
based on timing parameters described in [3].

The key characteristics of our mapping scheme based on
the above assumptions are as follows: Since vaults can be
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accessed in parallel, it is trivial to distribute elements across
vaults to maximize bandwidth. Our data layout further maps
accesses within a vault to different layers to ensure the
minimum possible latency of #ay.. for each access. Now,
considering accesses within a vault, our layout maximizes
bandwidth by hiding the latency of consecutive accesses to
the same row or different rows in a bank through a number of
intermediate accesses to other layers, utilizing p- tiayer 2 Leot
and q-tiayer = trow. For example, choosing p > 4 and ¢ > 40
based on the parameters above, will hide the latency of ..
and t,o,, and incur a minimum latency of ¢iayer. Hiding the
latency of accesses to different rows and columns is possible
due to the large number of banks [1] and faster access across
the 3¢ dimension of 3D memory [11], [13). We prove that
our data layout minimizes the latency in Section V-B.

For notational simplicity and WLOG, in our description of
the mapping schemes, we assume that parameters N, v, [, b,
r and ¢ are powers of 2 and that k = Vwvlbc is an integer
(power of 2). These assumptions can be relaxed at the cost
of increased notational complexity in the description of our
layout scheme. We also assume N < vvlbre (to ensure the
problem fits in memory).

Data Layout 1 (DL 1): Our first mapping scheme for the
Row FFT phase is a straightforward round-robin mapping of
the rows of A over vaults, layers, banks, columns and rows.
Each row of V input elements from A is distributed in a round-
robin fashion across v vaults (line 3). Similarly, in a round-
robin fashion, the N/v elements within a vault are distributed
among [ layers in that vault and the N/(vl) elements within
a layer distributed among its b banks (line 4). Finally, the
N/(uvlb) elements assigned to a bank are distributed in row
major order among its ¢ columns and r rows (line 5). This
mapping function is repeated for all the N rows of the input
matrix.

DL 1: Mapping Function for Matrix A (Row FFT Inputs)
1 ai;: (i,7)" element of A, 0<i,j < N -1
2 Address[a;;] — {v(ai;), las;), blay), elaij), r{aij)}

3 v(ai;) = (i- N +7) mod v
4 laij) = l%ﬂj modl;  blay) = I_L—,—ﬂj mod b
r(aij) = \_ ulbc J mod 1

5 clai;) = l%-t—llj mod c;

Data Layout 2 (DL 2): Our second mapping scheme
ensures that consecutive accesses to 3D memory components
(vaults, layers etc.) are sufficiently spaced to absorb respective
component activation overheads both during the row major
write phase at the end of the Row FFT as well as during
the column major read phase at the start of Column FFT.
Consider the same row index across all banks, layers and
vaults of 3D memory. Given ¢ columns per row, there are vlbc
locations corresponding to this row index across the entire 3D
memory. We want to repeatedly distribute elements from the
rows and columns of the N x N output matrix A of the Row
FFT phase uniformly among these vlbc locations for each row

index. Note that A is only available one row at a time and the
writing to memory occurs as per our mapping function afier
each row of A becomes available. We start by dividing A into
contiguous k x k blocks, with k = v/ulbe. It should be noted
that although we divide the matrix into blocks, our blocks
as well as our mapping function (as described below) are
quite different from the Baseline data layout [9] which maps
/¢ x /¢ blocks to a single bank row. Define the following
parameter x = {11332¢(3) | sl(b — 2)tiayer = trow}. Let

y = 2M8221 je. z rounded to the nearest power of 2. In
our layout, y represents the number of consecutive accesses
to the same row in a bank of a layer in a vault before the next
bank in that same layer and vault is accessed. DL 2 describes
in detail each of the mapping functions.

DL 2: Mapping Function for matrix A (Row FFT Outputs)
1y : (i, 5)° element of A, 0<i,j <N -1

2 Addms[ai)] = {”(au) {{a,j.) b(au) c(“’!})tr{ﬂu)}

3 {k,y} 7/ block related parameters

¢ (ag) = (+3) mod v

s lai) = (|3] + [§)) mod !

s bey) = (| ] + |5 ) mod b

7 r(ay) =% (&) + H;J

The key properties of the data layout that enable us to max-
imize bandwidth while limiting on-chip storage are described
below in the form of lemmas. We will utilize these lemmas in
our performance analysis in Section V-B.

We first show that when N x N matrix A is divided into
contiguous k x k blocks, every element within a block is
mapped to the same row index across all banks, layers and
vaults of 3D memory. Furthermore, distinct blocks are mapped
to distinct rows across memory.

Lemma 1. r(ai;) = r(ama) if and only if |i/k] = |m/k]
and |j/k| = |n/k]. Each row of k x k blocks from A is
laid out over N[k successive row indices in memory. The row
indices of successive blocks in a column of blocks increases
by N/k. The total number of rows used in DL 2 is N2/k2.

Proof. This follows from Line 7 of DL 2.

Lemma 2. Under DL 2, the two closest elements in a row or
column of A that are mapped to the same vault are mapped
to successive layers (modulo 1).

Proof. Using Lines 4 and 5 of DL 2, if v(a;p) = v(ay,) or
v(ap;) = v(ag;), then, (1) g = p (mod v) and (2) if |[g—p| =
m - v, then {(aiy) = (I{aip) + m) mod l. Thus, every layer
in a vault is accessed in round robin fashion both for writing
rows and reading columns of of A. Elements in the same row
or column of A that are mapped to the same vault and layer
are exactly “vl” apart.

From Lemma 2, note that k/(vl) represents the number of
elements from a k x k block mapped to a single layer within
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a vault. In this paper, we assume that k/(vl) > y in order to
achieve minimum latency. This assumption is validated given
the parameters from [1] as described earlier.

Lemma 3. Under DL 2, for each layer d (0 <d<1-1), of
every vault e (0 < e < v — 1), ¢ = k/(vly) successive banks
are accessed (modulo b), when writing each row and reading
each column of a k x k block. For each such bank, the same
row p, 0 < p < (N?/k?) — 1 is accessed y consecutive times.
For successive k x k blocks in the same row (column, resp.)
of blocks, within the same layer d and vault v, the next set of
q banks (modulo b) are accessed in a similar manner, but for
the next row p+ 1 (p + (N/k) respectively).

Proof. First, applying Lemma 2 we note that the same layer d
of every vault e is visited (mapped) every vl elements of a row
or column of a block. Consider traversing a row 1 of the block.
Looking at increasing values of j from Line 6 of DL 2, we get
that the same block is accessed y consecutive times before the
next block (modulo b) is visited, again y consecutive times.
When moving to the next k x k block in the row of blocks, j
has increased by k = glvy from the start of the current block
and so, we start with the ¢'* succeeding bank (modulo b).
A similar logic applies when considering traversing down a
column j of the block. Bank indices increase by 1 with every
vly increase in ¢ and by ¢ after the block is traversed. The
last line of the claim comes from applying Lemma 1. All y
accesses to these ¢ = k/(vly) blocks are to the same row.

Due to space considerations, we have not described the
exact column mapping in DL 2. Clearly, if there are m
mappings to a bank in a given layer and vault from a block,
since all m accesses are to the same row, m columns of the
row are mapped. Once this row is filled, the column index is
reset and the row index will have changed.

V. EVALUATION METHODOLOGY AND ANALYSIS
A. Performance Metric

In this paper, we compare the performance of Baseline and
Optimized data layouts using the following metrics:

+ Total Execution Time: measured as the amount of time
to perform 2D FFT including memory access time and
computation time.

« On-chip memory consumption: measured in terms of
number of elements of input data stored in on-chip
memory to perform 2D FFT.

B. Performance Analysis

The FFT kernel can process streaming data and therefore,
the time to write the output of FFT of a row/column of inputs
can be overlapped with the time to read next row/column of
inputs. The total execution time of 2D FFT can be divided
into components represented in Equation 1. The Initial Com-
putational Latency (ICL) is a constant and relatively small
compared to other components of the equation and will be
ignored in the analysis of total execution time.

Lot = Row FFT,e + Column FFT,5 +2 x ICL (1)

In the Baseline data layout [9], for a block size of 2 = ¢,
interleaving between banks on different layers results in ¢ - {
elements being available in a time span of ¢ - {.,. The entire
row/column of blocks, i.e., (N/,/c) blocks need to be stored
in on-chip memory. On the other hand, for t? < ¢, consecutive
accesses are mapped to the same bank and only ¢ elements are
available in the same time span. Therefore, the Baseline data
layout requires O(c: N/+/c), i.e., O(y/cN') on-chip memory to
achieve maximum bandwidth. This access pattern is repeated
N/y/c times to complete the Row FFT phase. The Column
FFT phase follows similar access pattern. [9] does not discuss
how to achieve maximum bandwidth when accessing partial
blocks from 3D memory. Based on this analysis, the range of
execution time of Row/Column FFT phase is,

N_N
Row/Column FFT reagpurite = (W){E)[étm, E*“"]

N? N?
= [—teoty —tcal]
vl v

Now, we analyze the performance of Optimized data layout.

Theorem 1. During the read phase of Row FFT, using DL
1, elements of a row of A can be accessed with a latency of
tiayer and v such elements are available simultaneously.

Proof. Follows from the round-robin mapping used in DL 1.

In the following, we focus on DL 2 for A used in write
phase of Row FFT and read phase of Column FFT.

Theorem 2. The latency of two consecutive accesses to the
same vault is tiayer. The latency of two consecutive accesses
to banks in the same vault and layer is | - tiayer.

Proof. From Lemma 2, consecutive accesses to a vault are
to successive layers modulo [. Since the latency of accessing
different layers in the same vault is ¢;qy.r, the result follows.

Theorem 3. DL 2 ensures that the latency of accesses to the
same row of a bank and to different banks in the same layer
is hidden by accesses to other layers.

Proof. From Lemma 3 and Theorem 2, the latency of access-
ing the same row of a bank or different banks in the same layer
is I-tigyer. This number is > {tcot, tbank } and therefore, these
latencies are hidden.

Theorem 4. DL 2 ensures that the latency of accesses to
different rows of a bank is hidden by accesses to other layers.

Proof. From Lemma 3, the earliest possible access to a
different row of the same bank when traversing a row or
column of A is after (b — 2)y accesses to banks in the same
layer. From Theorem 2, each such access has latency - tigyer-
Therefore, the latency of accesses to different rows of the same
bank is > yl(b — 2)tiayer- By definition of y, this value is
> trow, thereby effectively hiding the latency of access to
different rows in the same bank .

Based on Theorem 3, our mapping function has ensured
elements in each set of k elements are mapped to different

Approved for Public Release; Distribution Unlimited
34



layers and can be accessed with a latency _PI' tiayer. This
implies that consecutive elements in a row of A can be written
to the memory with a latency of #,y.,. Based on Theorem 4
and Lemma 3, the access latency for elements across different
sets in a block of k x k is also {14y Therefore, consecutive
elements in the same row/column of a block of k x &k can be
accessed with a latency of {jqye-. Based on definition of &, a
single row across banks in all layers and vaults consists of k
elements from k different rows of A. Another way to look at a
block of k x k is that it consists of & elements from £ different
columns of A Therefore, our data layout ensures consecutive
elements of a column of A can be read from the memory
during the Column FFT phase with a latency of f14y.,. Hence,
our data layout ensures minimum latency of ¢4, during both
Row FFT and Column FFT phase. By doing so, only a single
row or column of A, i.e., O(N) elements is stored in on-chip
memory. The execution time of Row/Column FFT is,

(3

If we relax our assumption that [ - ti,., > feor. | elements
are available in a time span of max(l - {jayer. Leot] and the
total execution time is bounded by (% -leot). Based on this
analysis, the range of execution time and the on-chip memory
of Baseline and Optimized data layouts is listed in Table II.

Row/Column FFT ragvrice = N+ N+ (tiayer V)

Data Layout Range of Execution Time On-chip Memory
(Troral) for Max. Bandwidth
2N? 2NZ
Baseline iT tools —— Lot O(/eN)
) v
2N+ N2
Optimized | [=— - tiayers 2’—;  tisol] O(N)
Fhl 1

TABLE II: Performance Comparison of Data Layouts
C. Performance Evaluation

3D memories have become popular recently, and since
the exact internal architecture is proprietary, existing cycle
accurate simulators do not capture all the features of the 3D
memory. For example, [16], [17] do not provide the feature
of inter-layer pipelining and are limited to specific types
of 3D memory. HMCSim [18] does not reveal the internal
architecture details due to Intellectual property rights. There-
fore, in this paper, we use the 3D memory model described
in Section IMI-A and analyze the performance of different
data layouts. We do not claim cycle accurate performance
comparison as we are looking for higher order performance
estimate of 2D FFT on 3D memory.

[Parameter [ v [T [ ] = [ e [ Vaull Bandwidth
[Values T AT 4T 4T]409 ] 25 8 GB/s

TABLE III: 3D Memory Parameter Values

For the performance analysis, timing parameters of 3D
memory are estimated as: ligyer = 1 08, thank = 2 ns,
teat = 4 ns and {5, = 40 ns [1], [3] (Section IV-B). We
assume vaults can be accessed in parallel making v elements
available from v vaults in a time equal to the latency of
accessing one element from 1 vault, i.e., {yaune = 0 ns, We

assume the inputs are complex single-precision floating point
numbers (2 x 32 bits per word) and each access to a vault
ensures | column/element of data, i.c., 64 bits are available
to the FPGA. The parameters of 3D memory are tabulated
in Table III. We assume a streaming FFT Processing Unit
on FPGA with 128 Gbits/s (16 GB/s) throughput [19]. For
a vault with a bandwidth of 8 GB/s [1], 2 vaults saturate the
throughput of the FFT processing unit. Therefore, 2 vaults are
used to read inputs and 2 vaults are used to store the outputs.

5 F 10 —1
b =
g. 104 16 = 1
o 2% |

B B
it s |
= 10 E I |
& £ |
L ERL |
& || 2 |

4B g1z 32768 2048 8192 32768

Problem Size (N} Problem Size (N)
||]ﬂl41:|u:linr: layout 0 Optimized In)-uull [ﬂl.lﬂ;mzline layout 10 ¢ d layout |

(a) On-chip Memory for
Maximum Bandwidth

(b) Execution Time on
Limited On-chip Memory

Fig. 2: Performance Comparison of Data Layouts

In Figure 2(a), we analyze the amount of on-chip memory
required to achieve maximum bandwidth for Baseline and
Optimized data layouts. The Baseline data layout uses a
block size of ¢ = 16 and on-chip memory of 33 Mbits to
achieve maximum bandwidth. We observe that the Optimized
data layout achieves maximum bandwidth with substantially
lower on-chip memory (163¢). In Figure 2(b), we assume the
architecture has a limited on-chip memory of 4 Mbits. For the
Baseline data layout, the available on-chip memory is suffi-
cient to achieve maximum bandwidth for small problem sizes
(N = 2048). For large problem sizes (N = 8192, 32768), due
to small amount of on-chip memory, Baseline data layout is
restricted to small block sizes and majority of the consecutive
accesses are mapped to the same layer and the bandwidth is
limited by tpans OF teor. This translates to a higher execution
time in comparison with the Optimized data layout. On the
other hand, the Optimized data layout does not suffer any
degradation in performance since the available on-chip mem-
ory is sufficient to store the required O(N') elements of input
data and ensures maximum bandwidth is achieved resulting in
[{—J'":"{L to ﬁff,?] ie., 2x to 4x reduction in execution time.

VI. CONCLUSION

We have presented an on-chip memory efficient data layout
to implement 2D FFT on 3D memory. Our data layout exploits
inter-layer pipelining and parallel vault access to hide the
latency overhead of strided accesses. The data layout ensures
maximum bandwidth is available from 3D memory with the
on-chip memory requirement of O(N) for a problem size of
N x N. In comparison with the Baseline data layout, our
Optimized data layout reduces the on-chip memory by N
for ¢ columns in a row of a memory bank. With limited on-
chip memory, our data layout achieves 2x to 4x reduction in
execution time compared with the Baseline data layout.
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ACRONYMS

AFRL Air Force Research Laboratory

BRAM Block Random Access Memory

C4ISR Command, Control, Communications, Computers, Intelligence, Surveillance and
Reconnaissance

DDR Double Data Rate

DRAM Dynamic Random Access memory

FFT Fast Fourier Transform

FPGA Field-Programmable Gate Array

LiM Logic in Memory

PoP Package on Package

PU Processing Unit

SRAM Static Random Access Memory

TSV Through Silicon Via

1,2,3D 1, 2, 3 Dimensional

3DIC 3D Integrated Circuit

3DMIA 3D Memory Integrated Architecture3DIC

3D MI-MC 3D Memory Integrated Multicore
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